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Limitations of distribution-free prediction

The guarantee for conformal prediction / holdout methods:
P{Y,,+1 € 6"(Xn+1)} >1-a
/

w.r.t. distribution of (X1, Y1),...,(Xnt+1, Yat1) i.i.d. from any distribution

The drawbacks:
e The guarantee is on average over the training data

e The guarantee is on average over the test point X1

e And, what if the data is not independent or not identically distrib.?

LVovk 2012, Conditional validity of inductive conformal predictors
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Limitations of distribution-free prediction

The guarantee for conformal prediction / holdout methods:
P{Y,,+1 € 6"(xn+1)} >1-a
/

w.r.t. distribution of (X1, Y1), ..., (Xnt1, Ynt1) i.i.d. from any distribution

The drawbacks:

e The guarantee is on average over the training data
For holdout, concentration ensures the coverage holds w.h.p. over training data®

For full conformal / jackknife4, no guarantee is possible!?

e The guarantee is on average over the test point X1
Will discuss this next

e And, what if the data is not independent or not identically distrib.?

Discussed in lecture 1 — covariate shift, time series, ... — need assumptions!

LVovk 2012, Conditional validity of inductive conformal predictors

) 2/19
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Conditional prediction

Is it possible to provide prediction that's valid conditional on X, .1, i.e.,

IED{Yn+1 e Co(Xns1) ‘ Xnﬂ} >1-a?

( Motivation—the marginal guarantee doesn't exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

3Vovk 2012, Conditional validity of inductive conformal predictors
Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Is it possible to provide prediction that's valid conditional on X, .1, i.e.,

IED{Yn+1 e Co(Xns1) ‘ X,,+1} >1-a?

( Motivation—the marginal guarantee doesn't exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

e If X is nonatomic (i.e., Px(x) =0 for all x € ), impossible—
E [Iength((?,,(XnH))] = oo for any G, that's valid distribution-free’

iid ., o
expected length when data P coverage must hold when data '~ any distribution

3Vovk 2012, Conditional validity of inductive conformal predictors
Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Conditional prediction

Can we relax the notion of conditionally valid coverage, to obtain a
nontrivial C,?

(1 — a, 6)-conditional coverage:* for any P & any X, with Px(X,) > 6,

]P{Y,,+1 € Co(Xnr1) ‘ Xpi1 € X*} >1—awrt datad P,

ABY, Candes, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
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Conditional prediction

Can we relax the notion of conditionally valid coverage, to obtain a
nontrivial C,?

(1 — a, 6)-conditional coverage:* for any P & any X, with Px(X,) > 6,

]P{Y,,+1 € Co(Xnr1) ‘ Xpi1 € X*} >1—awrt datad P,

A trivial solution: any method with (1 — «d)-marginal coverage,
automatically satisfies (1 — «, §)-conditional coverage

e The problem — any interval w/ (1 — «d) coverage will be very wide

4Bv, Candes, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
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Conditional prediction

Theorem: for nonatomic Px, the trivial solution is essentially optimal:

If C, satisfies (1 — v, §)-CC, then

E ['ength(fn(XnH))} > (

min. length of any oracle method )

with 1 — ad coverage for P

5/19



Conditional prediction

Conditional on bins: partition X = X, U --- U Xk,
& require IP’{Y,,H € a,(XnH) ‘ Xpi1 € Xk} > 1 — « for each k®

e For each k, data points {(X;, Y;) : Xi € Xk} are exchangeable

~~ run CP separately for each k to guarantee bin-conditional
coverage

e Note — the model [ can still be fitted on the entire data set!

An application — fairness with respect to subpopulations®

5Vovk 2012, Conditional validity of inductive conformal predictors
Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
B., Candés, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

6Romano, B., Sabatti, Candés 2019, With malice toward none: assessing uncertainty via equalized coverage
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Conditional prediction

Extensions:

Combining distribution-free inference with assumption-based inference:’

e Estimate the conditional distribution of Y|X ~ F(y|x)
e Use nonconformity score is S(x,y) = |I/-_\(y|x) —0.5|

— CP is valid with any score = marginal coverage
— If F satisfies consistency conditions = conditional coverage

7 Chernozhukov et al 2019, Distributional conformal prediction
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Conditional prediction

Extensions:

A localized form of the prediction guarantee—?°
construct the Pl using a kernel around the test point,
e.g., only the nearest neighbors of the test point

— achieves a local version of predictive validity

8Guan 2020, Conformal prediction with localization
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Inference for regression

What about inference for regression (confidence not prediction)?
Define marginal validity for confidence intervals:®

P{1p(Xni1) € Co(Xpi1)} 21— a

w.r.t. data"d P for any distribution P, where up(x) = E[Y | X = x]

9Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

108, 2020, Is distribution-free inference possible for binary regression? 9/19
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Inference for regression

What about inference for regression (confidence not prediction)?
Define marginal validity for confidence intervals:®

P {up(Xe) € GiXon) | 21~ a
w.r.t. data"d P for any distribution P, where up(x) = E[Y | X = x]

Special case: binary regression ~ up(x) =P{Y =1| X = x}

Theorem:'° If X is nonatomic, then

E [Iength((?n(X,,H))} > constant lower bound

depends on P and « but not on n

Example: if Y|X ~ Bernoulli(0.5), E [Iength(fn(Xn+1)) >1—«

(compare to trivial solution: C,(x) = [0,1] w.p. 1 — a or @ otherwise)

9Vovl<, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

108, 2020, Is distribution-free inference possible for binary regression? 9/19



Inference for regression

Intuition for why any distrib.-free conf. int. 6,, for up must be wide...

Theorem:!! If X is nonatomic, then any valid confidence interval C, is
also a valid prediction interval:

P{up(x,,ﬂ) € 6n(xn+1)} >l-aVP = ]P’{Y,,H € 5,,(x,,+1)} >1-aV P w/ Px nonatomic

1B, 2020, Is distribution-free inference possible for binary regression?

12\edarametla & Candes 2021, Distribution-free conditional median inference
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Inference for regression

Intuition for why any distrib.-free conf. int. 6,, for up must be wide...

Theorem:!! If X is nonatomic, then any valid confidence interval C, is
also a valid prediction interval:

P{MP(X,,H) € En(xm)} >l-aVP = ]P’{Y,,H € fn(x,,ﬂ)} >1-aV P w/ Px nonatomic

A related result —
the same holds for any C, that covers the conditional median of Y|X*?

1B, 2020, Is distribution-free inference possible for binary regression?

12\edarametla & Candes 2021, Distribution-free conditional median inference
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Inference for regression

Intuition:
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This challenge is related to the nonparametric regression literature —

it is impossible to be adaptive to the level of smoothness'?

13Gin¢ & Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models
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Inference for regression

From the nonparametric regression literature—"*

“conservative failure” vs “liberal failure”

(figure from Genovese & Wasserman 2008)

Proposal: consider coverage of a surrogate function € Finstead of true f

functions f ~ f
that are smoother than f

. 12/19
14Genovese & Wasserman 2008, Adaptive confidence bands Y



Calibration

Relaxing the goal of coverage of pp ~~ calibration

o Perfect calibration: E[Y | f(X)] = f(X) almost surely

15Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Theorem:'®
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Calibration

Relaxing the goal of coverage of pp ~~ calibration
o Perfect calibration: E[Y | f(X)] = f(X) almost surely
e Approx. calibration: [E[Y | f(X)] = f(X)| <ewp>1-a

Theorem:'®

e Approx. calibration & d.f. inference for regression are equivalent —

6n(Xn+1) = f(X,11) £ eis a d.f. confidence interval for up(X,i1)

e Approx. calibration & d.f. prediction are equiv. for nonatomic Px —
Co(Xnt1) = f(Xpy1) £ € is a d.f. prediction int. if Px nonatomic

15Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Calibration possible only if set of output values is < countably infinite:'°

e Let error level o be fixed, and let sample size n — oo
e A sequence of functions f, is asymptotically calibrated if ¢, = op(1)

o [f there exists an asymptotically calibrated sequence f,, then

lim sup |{possible values of f,(X)}| < countably infinite

n— oo

16Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Calibration possible only if set of output values is < countably infinite:'°

e Let error level o be fixed, and let sample size n — oo
e A sequence of functions f, is asymptotically calibrated if ¢, = op(1)

o [f there exists an asymptotically calibrated sequence f,, then

lim sup |{possible values of f,(X)}| < countably infinite

n— oo

Intuitively, this connects to impossibility for regression —
{(f(Xi), Yi)} is a new regression problem ~~ impossible if f(X) is nonatomic

16Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

If £(X) takes finitely many values... an example procedure:

e Usedatai=1,...,5 to train ji(x), & partition into X3 U---U Xk
(e.g., Xk = {x : cutoffy_; < fi(x) < cutoffi} )

e Use holdout set i = 7 +1,...,nto estimate E[Y | X € X\]

17Gupta & Ramdas 2021, Distribution-free calibration guarantees for histogram binning without sample splitting
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Calibration

If £(X) takes finitely many values... an example procedure:

e Usedatai=1,...,5 to train ji(x), & partition into X3 U---U Xk
(e.g., Xk = {x : cutoffy_; < fi(x) < cutoffi} )

e Use holdout set i = 7 +1,...,nto estimate E[Y | X € X\]

Binning can be data dependent without loss of validity —
we can use the holdout data to define the cutoffs between bins!*’
~ reduces loss of accuracy due to sample splitting

(still need to train ji separately)

17Gupta & Ramdas 2021, Distribution-free calibration guarantees for histogram binning without sample splitting
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Beyond nonatomic

Returning to inference for regression (conf. int. for E[Y | X])...

Suppose Px is instead discrete.
At sample size n, intuitively separates into distinct regimes...

e Trivial — finitely many possible X's
(Px(x) < 1)

e Easy — each possible X value is observed many times
(Px(x) > n71)

e Medium — some X's are repeated, but most are unique
(™2 < Px(x) < n71)

e Hard — w.h.p. the data set has no repeated X's (Px(x) < n~2)
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Returning to inference for regression (conf. int. for E[Y | X])...

Suppose Px is instead discrete.
At sample size n, intuitively separates into distinct regimes...

e Trivial — finitely many possible X's
(Px(x) <1) ~ build a C.I. for each x, with width < n=1/2

e Easy — each possible X value is observed many times
(Px(X) > nfl)  build a C.I. for each x, with width < n;1/2

e Medium — some X's are repeated, but most are unique
(n72 < Px(x) < nfl) “ d.f. inference is still possible!

e Hard — w.h.p. the data set has no repeated X's (Px(x) < n~2)

p indistinguishable from nonatomic, so width is < 1

16/19



Beyond nonatomic

P might be discrete, nonatomic, or a mixture —
how to unify these three cases?

M.,(Px) = minimum # of points needed to capture > 1 —  probability

18 ee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between
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M.,(Px) = minimum # of points needed to capture > 1 —  probability

1/4
Theorem:'® E [Iength(Cn(XnH))} 2 min {Wj;)), 1}

/

Vanishing width iff M, (Px) < n?
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Beyond nonatomic

P might be discrete, nonatomic, or a mixture —
how to unify these three cases?

M.,(Px) = minimum # of points needed to capture > 1 —  probability

1/4
Theorem:'® E [Iength(Cn(XnH))} 2 min {Wj;)), 1}

/

Vanishing width iff M, (Px) < n?

(An approx. matching upper bound can be constructed if assume we can
accurately estimate the support of Px and the function E[Y | X = x])

18 ee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between
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Open questions & future directions

Open questions — algorithms

e Statistically efficient algorithms for the not-nonatomic case,
for conditional prediction / marginal inference on up
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Open questions & future directions

Open questions — algorithms

e Statistically efficient algorithms for the not-nonatomic case,
for conditional prediction / marginal inference on up

e Computationally efficient versions of conformal / jackknife+,
when model alg. is expensive / when Y is multidimensional / etc

e Can we use the data to guide choices (e.g., score function S(x, y)),
without the need for an additional split of the training data?

18/19



Open questions & future directions

Open questions — framework & definitions

e Are there interesting weaker definitions of validity,
that are still meaningful without assumptions?

— relaxations of conditional validity, for prediction

— relaxations of marginal coverage, for inference on regression
(e.g., surrogate functions)

— relaxations of calibration, to allow for continuous predictions

19Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure
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Open questions & future directions

Open questions — framework & definitions

e Are there interesting weaker definitions of validity,
that are still meaningful without assumptions?

— relaxations of conditional validity, for prediction

— relaxations of marginal coverage, for inference on regression
(e.g., surrogate functions)

— relaxations of calibration, to allow for continuous predictions

e Are there meaningful ways to study distrib.-free hypothesis tests?
(Known: impossible to test X I Y | Z distrib.-free, if Z nonatomic)"’

e Are there methods that achieve a weak property for all P,
& a stronger property for "nice” P?

19Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure
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