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Limitations of distribution-free prediction

The guarantee for conformal prediction / holdout methods:

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α

↗
w.r.t. distribution of (X1,Y1), . . . , (Xn+1,Yn+1) i.i.d. from any distribution

The drawbacks:

• The guarantee is on average over the training data

For holdout, concentration ensures the coverage holds w.h.p. over training data1

For full conformal / jackknife+, no guarantee is possible!2

• The guarantee is on average over the test point Xn+1

Will discuss this next

• And, what if the data is not independent or not identically distrib.?

Discussed in lecture 1 — covariate shift, time series, ... — need assumptions!

1Vovk 2012, Conditional validity of inductive conformal predictors

2Work in progress, Bian & B. 2021
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Conditional prediction

Is it possible to provide prediction that’s valid conditional on Xn+1, i.e.,

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1

}
≥ 1− α ?

( Motivation—the marginal guarantee doesn’t exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

• If X is nonatomic (i.e., PX (x) = 0 for all x ∈ X ), impossible—

E
[
length(Ĉn(Xn+1))

]
=∞ for any Ĉn that’s valid distribution-free3︸ ︷︷ ︸

expected length when data
iid∼ P

︸ ︷︷ ︸
coverage must hold when data

iid∼ any distribution

3Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Conditional prediction

Can we relax the notion of conditionally valid coverage, to obtain a

nontrivial Ĉn?

(1− α, δ)-conditional coverage:4 for any P & any X∗ with PX (X∗) ≥ δ,

P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1 ∈ X∗
}
≥ 1− α w.r.t. data

iid∼ P.

A trivial solution: any method with (1− αδ)-marginal coverage,

automatically satisfies (1− α, δ)-conditional coverage

• The problem — any interval w/ (1− αδ) coverage will be very wide

4B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

4/19



Conditional prediction

Can we relax the notion of conditionally valid coverage, to obtain a

nontrivial Ĉn?
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Conditional prediction

Theorem: for nonatomic PX , the trivial solution is essentially optimal:

If Ĉn satisfies (1− α, δ)-CC, then

E
[
length(Ĉn(Xn+1))

]
≥

(
min. length of any oracle method

with 1− αδ coverage for P

)

5/19



Conditional prediction

Conditional on bins: partition X = X1 ∪ · · · ∪ XK ,

& require P
{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1 ∈ Xk

}
≥ 1− α for each k5

• For each k , data points {(Xi ,Yi ) : Xi ∈ Xk} are exchangeable

 run CP separately for each k to guarantee bin-conditional

coverage

• Note — the model µ̂ can still be fitted on the entire data set!

An application — fairness with respect to subpopulations6

5Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

6Romano, B., Sabatti, Candès 2019, With malice toward none: assessing uncertainty via equalized coverage
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Conditional prediction

Extensions:

Combining distribution-free inference with assumption-based inference:7

• Estimate the conditional distribution of Y |X  F̂ (y |x)

• Use nonconformity score is S(x , y) = |F̂ (y |x)− 0.5|

— CP is valid with any score ⇒ marginal coverage

— If F̂ satisfies consistency conditions ⇒ conditional coverage

7Chernozhukov et al 2019, Distributional conformal prediction

7/19



Conditional prediction

Extensions:

A localized form of the prediction guarantee—8

construct the PI using a kernel around the test point,

e.g., only the nearest neighbors of the test point

→ achieves a local version of predictive validity

8Guan 2020, Conformal prediction with localization

8/19



Inference for regression

What about inference for regression (confidence not prediction)?

Define marginal validity for confidence intervals:9

P
{
µP(Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α

w.r.t. data
iid∼ P for any distribution P, where µP(x) = E [Y | X = x ]

Special case: binary regression  µP(x) = P {Y = 1 | X = x}

Theorem:10 If X is nonatomic, then

E
[
length(Ĉn(Xn+1))

]
≥ constant lower bound︸ ︷︷ ︸

depends on P and α but not on n

Example: if Y |X ∼ Bernoulli(0.5), E
[
length(Ĉn(Xn+1))

]
≥ 1− α

(compare to trivial solution: Ĉn(x) = [0, 1] w.p. 1− α or ∅ otherwise)

9Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

10B. 2020, Is distribution-free inference possible for binary regression? 9/19
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Inference for regression

Intuition for why any distrib.-free conf. int. Ĉn for µP must be wide...

Theorem:11 If X is nonatomic, then any valid confidence interval Ĉn is
also a valid prediction interval:

P
{
µP(Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1−α ∀ P ⇒ P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1−α ∀ P w/ PX nonatomic

A related result —

the same holds for any Ĉn that covers the conditional median of Y |X 12

11B. 2020, Is distribution-free inference possible for binary regression?

12Medarametla & Candès 2021, Distribution-free conditional median inference
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Inference for regression

Intuition:
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This challenge is related to the nonparametric regression literature —

it is impossible to be adaptive to the level of smoothness13

13Giné & Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models
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Inference for regression

From the nonparametric regression literature—14

878 C. GENOVESE AND L. WASSERMAN

The message we take from the nonadaptivity results in Low (1997) and Sec-
tion 2 of this paper is that the problem of constructing confidence bands for f over
nonparametric classes is simply too difficult under the usual definition of coverage.
Instead, we introduce a slightly weaker notion—surrogate coverage—under which
it is possible to obtain adaptive bands while allowing sharp inferences about the
main features of f .

1.2. Surrogates. Figure 1 shows two situations where a band fails to capture
the true function. The top plot shows a conservative failure: the only place where
f is not contained in the band is when the bands are smoother than the truth. The

FIG. 1. The top plot shows a conservative failure: the only place where f is not contained in the
band is when the bands are smoother than the truth. The bottom plot shows a liberal failure: the only
place where f is not contained in the band is when the bands are less smooth than the truth. The
usual notion of coverage treats these failures equally.“conservative failure” vs “liberal failure”

(figure from Genovese & Wasserman 2008)

Proposal: consider coverage of a surrogate function∈ F︸︷︷︸
functions f̃ ≈ f

that are smoother than f

instead of true f

14Genovese & Wasserman 2008, Adaptive confidence bands
12/19



Calibration

Relaxing the goal of coverage of µP  calibration

• Perfect calibration: E [Y | f (X )] = f (X ) almost surely

• Approx. calibration:
∣∣E [Y | f (X )]− f (X )

∣∣ ≤ ε w.p.≥ 1− α

Theorem:15

• Approx. calibration & d.f. inference for regression are equivalent —

Ĉn(Xn+1) = f (Xn+1)± ε is a d.f. confidence interval for µP(Xn+1)

• Approx. calibration & d.f. prediction are equiv. for nonatomic PX —

Ĉn(Xn+1) = f (Xn+1)± ε is a d.f. prediction int. if PX nonatomic

15Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Calibration possible only if set of output values is ≤ countably infinite:16

• Let error level α be fixed, and let sample size n→∞

• A sequence of functions fn is asymptotically calibrated if εn = oP(1)

• If there exists an asymptotically calibrated sequence fn, then

lim sup
n→∞

∣∣{possible values of fn(X )}
∣∣ ≤ countably infinite

Intuitively, this connects to impossibility for regression —

{(f (Xi ),Yi )} is a new regression problem  impossible if f (X ) is nonatomic

16Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

If f (X ) takes finitely many values... an example procedure:

• Use data i = 1, . . . , n2 to train µ̂(x), & partition into X1 ∪ · · · ∪ XK

(e.g., Xk = {x : cutoffk−1 < µ̂(x) ≤ cutoffk} )

• Use holdout set i = n
2 + 1, . . . , n to estimate E [Y | X ∈ Xk ]

Binning can be data dependent without loss of validity —

we can use the holdout data to define the cutoffs between bins!17

 reduces loss of accuracy due to sample splitting

(still need to train µ̂ separately)

17Gupta & Ramdas 2021, Distribution-free calibration guarantees for histogram binning without sample splitting
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Beyond nonatomic

Returning to inference for regression (conf. int. for E [Y | X ])...

Suppose PX is instead discrete.

At sample size n, intuitively separates into distinct regimes...

• Trivial — finitely many possible X ’s

(PX (x) � 1)

↘ build a C.I. for each x , with width � n−1/2

• Easy — each possible X value is observed many times

(PX (x)� n−1)

↘ build a C.I. for each x , with width � n
−1/2
x

• Medium — some X ’s are repeated, but most are unique

(n−2 � PX (x)� n−1)

↘ d.f. inference is still possible!

• Hard — w.h.p. the data set has no repeated X ’s (PX (x)� n−2)

↘ indistinguishable from nonatomic, so width is � 1

16/19
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Beyond nonatomic

P might be discrete, nonatomic, or a mixture —

how to unify these three cases?

Mγ(PX ) = minimum # of points needed to capture ≥ 1− γ probability

Theorem:18 E
[
length(Ĉn(Xn+1))

]
& min

{(
Mγ(PX )

)1/4

n1/2 , 1

}
↗

Vanishing width iff Mγ(PX )� n2

(An approx. matching upper bound can be constructed if assume we can

accurately estimate the support of PX and the function E [Y | X = x ])

18Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between
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accurately estimate the support of PX and the function E [Y | X = x ])

18Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between

17/19



Beyond nonatomic

P might be discrete, nonatomic, or a mixture —

how to unify these three cases?

Mγ(PX ) = minimum # of points needed to capture ≥ 1− γ probability

Theorem:18 E
[
length(Ĉn(Xn+1))
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Open questions & future directions

Open questions — algorithms

• Statistically efficient algorithms for the not-nonatomic case,

for conditional prediction / marginal inference on µP

• Computationally efficient versions of conformal / jackknife+,

when model alg. is expensive / when Y is multidimensional / etc

• Can we use the data to guide choices (e.g., score function S(x , y)),

without the need for an additional split of the training data?
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Open questions & future directions

Open questions — framework & definitions

• Are there interesting weaker definitions of validity,

that are still meaningful without assumptions?

— relaxations of conditional validity, for prediction

— relaxations of marginal coverage, for inference on regression

(e.g., surrogate functions)

— relaxations of calibration, to allow for continuous predictions

• Are there meaningful ways to study distrib.-free hypothesis tests?

(Known: impossible to test X ⊥⊥ Y | Z distrib.-free, if Z nonatomic)19

• Are there methods that achieve a weak property for all P,

& a stronger property for “nice” P?

19Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure
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