Lecture 2 Distribution-free inference: limits & open questions

Rina Foygel Barber

http://www.stat.uchicago.edu/~rina/

The guarantee for conformal prediction / holdout methods:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. distribution of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ i.i.d. from any distribution

The drawbacks:

• The guarantee is on average over the training data

- The guarantee is on average over the test point X_{n+1}
- And, what if the data is not independent or not identically distrib.?

¹Vovk 2012, *Conditional validity of inductive conformal predictors* ²Work in progress, Bian & B, 2021

The guarantee for conformal prediction / holdout methods:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. distribution of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ i.i.d. from any distribution

The drawbacks:

- The guarantee is on average over the training data
 For holdout, concentration ensures the coverage holds w.h.p. over training data¹
 For full conformal / jackknife+, no guarantee is possible!²
- The guarantee is on average over the test point X_{n+1}
- And, what if the data is not independent or not identically distrib.?

¹Vovk 2012, Conditional validity of inductive conformal predictors

²Work in progress, Bian & B. 2021

The guarantee for conformal prediction / holdout methods:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. distribution of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ i.i.d. from any distribution

The drawbacks:

- The guarantee is on average over the training data
 For holdout, concentration ensures the coverage holds w.h.p. over training data¹
 For full conformal / jackknife+, no guarantee is possible!²
- The guarantee is *on average* over the test point X_{n+1} Will discuss this next
- And, what if the data is not independent or not identically distrib.?

¹Vovk 2012, *Conditional validity of inductive conformal predictors* ²Work in progress, Bian & B, 2021

The guarantee for conformal prediction / holdout methods:

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. distribution of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ i.i.d. from any distribution

The drawbacks:

- The guarantee is on average over the training data
 For holdout, concentration ensures the coverage holds w.h.p. over training data¹
 For full conformal / jackknife+, no guarantee is possible!²
- The guarantee is *on average* over the test point X_{n+1} Will discuss this next
- And, what if the data is not independent or not identically distrib.? Discussed in lecture 1 covariate shift, time series, ... need assumptions!

¹Vovk 2012, Conditional validity of inductive conformal predictors
 ²Work in progress, Bian & B. 2021

Is it possible to provide prediction that's valid conditional on X_{n+1} , i.e.,

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\mid X_{n+1}\right\}\geq 1-\alpha ?$$

(Motivation-the marginal guarantee doesn't exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage)

³Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

Is it possible to provide prediction that's valid conditional on X_{n+1} , i.e.,

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\mid X_{n+1}\right\}\geq 1-\alpha ?$$

(Motivation—the marginal guarantee doesn't exclude, e.g., 90% of individuals have 100% coverage / 10% of individuals have 0% coverage)

• If X is nonatomic (i.e., $P_X(x) = 0$ for all $x \in \mathcal{X}$), impossible— $\mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] = \infty$ for any \widehat{C}_n that's valid distribution-free³

³Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

Is it possible to provide prediction that's valid conditional on X_{n+1} , i.e.,

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\mid X_{n+1}\right\}\geq 1-\alpha ?$$

(Motivation—the marginal guarantee doesn't exclude, e.g.,
90% of individuals have 100% coverage / 10% of individuals have 0% coverage)

• If X is nonatomic (i.e., $P_X(x) = 0$ for all $x \in \mathcal{X}$), impossible— $\mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] = \infty \text{ for any } \widehat{C}_n \text{ that's valid distribution-free}^3$ expected length when data $\stackrel{\text{iid}}{\sim} P$ coverage must hold when data $\stackrel{\text{iid}}{\sim}$ any distribution

³Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

- Can we relax the notion of conditionally valid coverage, to obtain a nontrivial \hat{C}_n ?
- $(1 \alpha, \delta)$ -conditional coverage:⁴ for any P & any \mathcal{X}_* with $P_X(\mathcal{X}_*) \geq \delta$,

$$\mathbb{P}\left\{\left.Y_{n+1}\in \widehat{C}_n(X_{n+1})\ \right|\ X_{n+1}\in \mathcal{X}_*\right\}\geq 1-\alpha \text{ w.r.t. }\mathsf{data}\overset{\mathrm{iid}}{\sim} \mathsf{P}.$$

⁴B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

- Can we relax the notion of conditionally valid coverage, to obtain a nontrivial \hat{C}_n ?
- $(1 \alpha, \delta)$ -conditional coverage:⁴ for any P & any \mathcal{X}_* with $P_X(\mathcal{X}_*) \geq \delta$,

$$\mathbb{P}\left\{\left.Y_{n+1}\in \widehat{C}_n(X_{n+1})\ \right|\ X_{n+1}\in \mathcal{X}_*\right\}\geq 1-\alpha \text{ w.r.t. }\mathsf{data}^{\mathrm{iid}}\sim \mathsf{P}.$$

A trivial solution: any method with $(1 - \alpha \delta)$ -marginal coverage, automatically satisfies $(1 - \alpha, \delta)$ -conditional coverage

• The problem — any interval w/ $(1 - \alpha \delta)$ coverage will be very wide

⁴B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

Theorem: for nonatomic P_X , the trivial solution is essentially optimal: If \widehat{C}_n satisfies $(1 - \alpha, \delta)$ -CC, then

$$\mathbb{E}\left[\mathsf{length}(\widehat{C}_n(X_{n+1}))\right] \ge \left(\begin{array}{c}\mathsf{min. \ length \ of \ any \ oracle \ method}\\\mathsf{with \ }1-\alpha\delta \ \mathsf{coverage \ for \ }P\end{array}\right)$$

Conditional on bins: partition $\mathcal{X} = \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_K$, & require $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_k\right\} \ge 1 - \alpha$ for each k^5

- For each k, data points {(X_i, Y_i) : X_i ∈ X_k} are exchangeable
 → run CP separately for each k to guarantee bin-conditional coverage
- Note the model $\hat{\mu}$ can still be fitted on the entire data set!

An application — fairness with respect to subpopulations⁶

⁵Vovk 2012, Conditional validity of inductive conformal predictors

Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference

⁶Romano, B., Sabatti, Candès 2019, With malice toward none: assessing uncertainty via equalized coverage

Extensions:

Combining distribution-free inference with assumption-based inference:⁷

- Estimate the conditional distribution of $Y|X \rightsquigarrow \widehat{F}(y|x)$
- Use nonconformity score is $S(x,y) = |\widehat{F}(y|x) 0.5|$
 - CP is valid with any score \Rightarrow marginal coverage
 - If \widehat{F} satisfies consistency conditions \Rightarrow conditional coverage

⁷Chernozhukov et al 2019, Distributional conformal prediction

Extensions:

A localized form of the prediction guarantee—⁸ construct the PI using a kernel around the test point, e.g., only the nearest neighbors of the test point

 \rightarrow achieves a local version of predictive validity

⁸Guan 2020, Conformal prediction with localization

What about inference for regression (confidence not prediction)? Define marginal validity for confidence intervals:⁹

$$\mathbb{P}\left\{\mu_{P}(X_{n+1})\in\widehat{C}_{n}(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. data $\stackrel{\text{iid}}{\sim} P$ for any distribution P, where $\mu_P(x) = \mathbb{E}[Y \mid X = x]$

⁹Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World ¹⁰B. 2020, Is distribution-free inference possible for binary regression?

What about inference for regression (confidence not prediction)? Define marginal validity for confidence intervals:⁹

$$\mathbb{P}\left\{\mu_{P}(X_{n+1})\in\widehat{C}_{n}(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. data^{iid} P for any distribution P, where $\mu_P(x) = \mathbb{E}[Y \mid X = x]$ Special case: binary regression $\rightsquigarrow \mu_P(x) = \mathbb{P}\{Y = 1 \mid X = x\}$

⁹Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World ¹⁰B. 2020, Is distribution-free inference possible for binary regression?

What about inference for regression (confidence not prediction)? Define marginal validity for confidence intervals:⁹

$$\mathbb{P}\left\{\mu_{P}(X_{n+1})\in\widehat{C}_{n}(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t. data^{iid} P for any distribution P, where $\mu_P(x) = \mathbb{E}[Y \mid X = x]$ Special case: binary regression $\rightsquigarrow \mu_P(x) = \mathbb{P}\{Y = 1 \mid X = x\}$

Theorem:¹⁰ If X is nonatomic, then $\mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] \geq \underbrace{\operatorname{constant lower bound}}_{\operatorname{depends on } P \text{ and } \alpha \text{ but not on } n}$ Example: if $Y|X \sim \operatorname{Bernoulli}(0.5), \mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] \geq 1 - \alpha$ (compare to trivial solution: $\widehat{C}_n(x) = [0, 1]$ w.p. $1 - \alpha$ or \varnothing otherwise)

⁹Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World ¹⁰B. 2020, Is distribution-free inference possible for binary regression?

Intuition for why any distrib.-free conf. int. \widehat{C}_n for μ_P must be wide...

Theorem:¹¹ If X is nonatomic, then any valid confidence interval \widehat{C}_n is also a valid prediction interval:

$$\mathbb{P}\left\{\mu_{P}(X_{n+1})\in\widehat{C}_{n}(X_{n+1})\right\}\geq 1-\alpha \;\forall\; P \quad \Rightarrow \; \mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{n}(X_{n+1})\right\}\geq 1-\alpha \;\forall\; P \; \mathsf{w}/\; P_{X} \; \mathsf{nonatomic}$$

¹¹B. 2020, Is distribution-free inference possible for binary regression?

¹²Medarametla & Candès 2021, Distribution-free conditional median inference

Intuition for why any distrib.-free conf. int. \widehat{C}_n for μ_P must be wide...

Theorem:¹¹ If X is nonatomic, then any valid confidence interval \widehat{C}_n is also a valid prediction interval:

$$\mathbb{P}\left\{\mu_{P}(X_{n+1})\in\widehat{C}_{n}(X_{n+1})\right\}\geq1-\alpha\;\forall\;P\quad\Rightarrow\;\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_{n}(X_{n+1})\right\}\geq1-\alpha\;\forall\;P\;\mathsf{w}|\;P_{X}\;\mathsf{nonatomic}$$

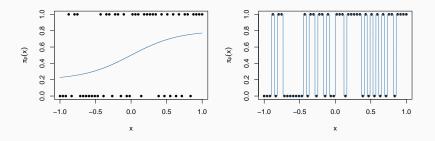
A related result the same holds for any \widehat{C}_n that covers the conditional median of $Y|X^{12}$

¹¹B. 2020, Is distribution-free inference possible for binary regression?

¹²Medarametla & Candès 2021, Distribution-free conditional median inference

Inference for regression

Intuition:



This challenge is related to the nonparametric regression literature — it is impossible to be adaptive to the level of smoothness $^{\rm 13}$

¹³Giné & Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models

Inference for regression

From the nonparametric regression literature—¹⁴

"conservative failure" vs "liberal failure"

(figure from Genovese & Wasserman 2008)

Proposal: consider coverage of a surrogate function $\in \mathcal{F}$ instead of true f

functions $\tilde{f} \approx f$ that are smoother than f

¹⁴Genovese & Wasserman 2008, Adaptive confidence bands

• Perfect calibration: $\mathbb{E}[Y \mid f(X)] = f(X)$ almost surely

¹⁵Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

- Perfect calibration: $\mathbb{E}[Y \mid f(X)] = f(X)$ almost surely
- Approx. calibration: $\left|\mathbb{E}\left[Y \mid f(X)\right] f(X)\right| \le \epsilon \text{ w.p.} \ge 1 \alpha$

¹⁵Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

- Perfect calibration: $\mathbb{E}[Y \mid f(X)] = f(X)$ almost surely
- Approx. calibration: $\left| \mathbb{E} \left[Y \mid f(X) \right] f(X) \right| \le \epsilon \text{ w.p.} \ge 1 \alpha$

Theorem:¹⁵

• Approx. calibration & d.f. inference for regression are equivalent — $\widehat{C}_n(X_{n+1}) = f(X_{n+1}) \pm \epsilon$ is a d.f. confidence interval for $\mu_P(X_{n+1})$

¹⁵Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

- Perfect calibration: $\mathbb{E}[Y \mid f(X)] = f(X)$ almost surely
- Approx. calibration: $\left|\mathbb{E}\left[Y \mid f(X)\right] f(X)\right| \le \epsilon \text{ w.p.} \ge 1 \alpha$

Theorem:¹⁵

- Approx. calibration & d.f. inference for regression are equivalent $\widehat{C}_n(X_{n+1}) = f(X_{n+1}) \pm \epsilon$ is a d.f. confidence interval for $\mu_P(X_{n+1})$
- Approx. calibration & d.f. prediction are equiv. for nonatomic $P_X \widehat{C}_n(X_{n+1}) = f(X_{n+1}) \pm \epsilon$ is a d.f. prediction int. if P_X nonatomic

¹⁵Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

Calibration possible only if set of output values is \leq countably infinite:¹⁶

- Let error level α be fixed, and let sample size $n \to \infty$
- A sequence of functions f_n is asymptotically calibrated if $\epsilon_n = o_P(1)$
- If there exists an asymptotically calibrated sequence f_n , then

 $\lim \sup_{n \to \infty} \left| \{ \text{possible values of } f_n(X) \} \right| \le \text{countably infinite}$

¹⁶Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

Calibration possible only if set of output values is \leq countably infinite:¹⁶

- Let error level α be fixed, and let sample size $n \to \infty$
- A sequence of functions f_n is asymptotically calibrated if $\epsilon_n = o_P(1)$
- If there exists an asymptotically calibrated sequence f_n , then

 $\lim \sup_{n \to \infty} \left| \{ \text{possible values of } f_n(X) \} \right| \le \text{countably infinite}$

Intuitively, this connects to impossibility for regression — $\{(f(X_i), Y_i)\}$ is a new regression problem \rightsquigarrow impossible if f(X) is nonatomic

¹⁶Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration

If f(X) takes finitely many values... an example procedure:

- Use data i = 1,..., ⁿ/₂ to train µ(x), & partition into X₁ ∪ ··· ∪ X_K (e.g., X_k = {x : cutoff_{k-1} < µ(x) ≤ cutoff_k})
- Use holdout set $i = \frac{n}{2} + 1, \dots, n$ to estimate $\mathbb{E}\left[Y \mid X \in \mathcal{X}_k\right]$

¹⁷Gupta & Ramdas 2021, Distribution-free calibration guarantees for histogram binning without sample splitting

If f(X) takes finitely many values... an example procedure:

- Use data i = 1,..., ⁿ/₂ to train µ(x), & partition into X₁ ∪ ··· ∪ X_K (e.g., X_k = {x : cutoff_{k-1} < µ(x) ≤ cutoff_k})
- Use holdout set $i = \frac{n}{2} + 1, \dots, n$ to estimate $\mathbb{E}\left[Y \mid X \in \mathcal{X}_k\right]$

Binning can be data dependent without loss of validity we can use the holdout data to define the cutoffs between bins!¹⁷ ↔ reduces loss of accuracy due to sample splitting

(still need to train $\widehat{\mu}$ separately)

¹⁷Gupta & Ramdas 2021, Distribution-free calibration guarantees for histogram binning without sample splitting

Suppose P_X is instead *discrete*.

At sample size *n*, intuitively separates into distinct regimes...

- Trivial finitely many possible X's $(P_X(x) \asymp 1)$
- Easy each possible X value is observed many times $(P_X(x) \gg n^{-1})$
- Medium some X's are repeated, but most are unique $(n^{-2} \ll P_X(x) \ll n^{-1})$
- Hard w.h.p. the data set has no repeated X's $(P_X(x) \ll n^{-2})$

- Trivial finitely many possible X's $(P_X(x) \asymp 1)$ \searrow build a C.I. for each x, with width $\asymp n^{-1/2}$
- Easy each possible X value is observed many times $(P_X(x) \gg n^{-1})$
- Medium some X's are repeated, but most are unique $(n^{-2} \ll P_X(x) \ll n^{-1})$
- Hard w.h.p. the data set has no repeated X's $(P_X(x) \ll n^{-2})$

- Trivial finitely many possible X's $(P_X(x) \asymp 1)$ > build a C.I. for each x, with width $\asymp n^{-1/2}$
- Easy each possible X value is observed many times $(P_X(x) \gg n^{-1})$ > build a C.I. for each x, with width $\approx n_x^{-1/2}$
- Medium some X's are repeated, but most are unique $(n^{-2} \ll P_X(x) \ll n^{-1})$
- Hard w.h.p. the data set has no repeated X's $(P_X(x) \ll n^{-2})$

- Trivial finitely many possible X's $(P_X(x) \asymp 1)$ > build a C.I. for each x, with width $\asymp n^{-1/2}$
- Easy each possible X value is observed many times $(P_X(x) \gg n^{-1})$ > build a C.I. for each x, with width $\approx n_x^{-1/2}$
- Medium some X's are repeated, but most are unique $(n^{-2} \ll P_X(x) \ll n^{-1})$
- Hard w.h.p. the data set has no repeated X's $(P_X(x) \ll n^{-2})$ \searrow indistinguishable from nonatomic, so width is $\asymp 1$

- Trivial finitely many possible X's $(P_X(x) \asymp 1)$ > build a C.I. for each x, with width $\asymp n^{-1/2}$
- Easy each possible X value is observed many times $(P_X(x) \gg n^{-1})$ > build a C.I. for each x, with width $\approx n_x^{-1/2}$
- Medium some X's are repeated, but most are unique $(n^{-2} \ll P_X(x) \ll n^{-1}) \longrightarrow d.f.$ inference is still possible!
- Hard w.h.p. the data set has no repeated X's $(P_X(x) \ll n^{-2})$ \searrow indistinguishable from nonatomic, so width is $\asymp 1$

P might be discrete, nonatomic, or a mixture — how to unify these three cases?

 $M_{\gamma}(P_X) = \text{minimum } \# \text{ of points needed to capture } \geq 1 - \gamma \text{ probability}$

¹⁸Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between

P might be discrete, nonatomic, or a mixture — how to unify these three cases?

 $M_{\gamma}(P_X) =$ minimum # of points needed to capture $\geq 1 - \gamma$ probability

Theorem:¹⁸
$$\mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] \gtrsim \min\left\{\frac{\left(M_{\gamma}(P_X)\right)^{1/4}}{n^{1/2}}, 1\right\}$$

Vanishing width iff $M_{\gamma}(P_X) \ll n^2$

¹⁸Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between

P might be discrete, nonatomic, or a mixture — how to unify these three cases?

 $M_{\gamma}(P_X) =$ minimum # of points needed to capture $\geq 1 - \gamma$ probability

Theorem:¹⁸
$$\mathbb{E}\left[\operatorname{length}(\widehat{C}_n(X_{n+1}))\right] \gtrsim \min\left\{\frac{\left(M_{\gamma}(P_X)\right)^{1/4}}{n^{1/2}}, 1\right\}$$

Vanishing width iff $M_{\gamma}(P_X) \ll n^2$

(An approx. matching upper bound can be constructed if assume we can accurately estimate the support of P_X and the function $\mathbb{E}[Y \mid X = x]$)

¹⁸Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between

Open questions — algorithms

• Statistically efficient algorithms for the not-nonatomic case, for conditional prediction / marginal inference on μ_P

Open questions — algorithms

- Statistically efficient algorithms for the not-nonatomic case, for conditional prediction / marginal inference on μ_P
- Computationally efficient versions of conformal / jackknife+, when model alg. is expensive / when Y is multidimensional / etc

Open questions — algorithms

- Statistically efficient algorithms for the not-nonatomic case, for conditional prediction / marginal inference on μ_P
- Computationally efficient versions of conformal / jackknife+, when model alg. is expensive / when Y is multidimensional / etc
- Can we use the data to guide choices (e.g., score function S(x, y)), without the need for an additional split of the training data?

Open questions — framework & definitions

- Are there interesting weaker definitions of validity, that are still meaningful without assumptions?
 - relaxations of conditional validity, for prediction
 - relaxations of marginal coverage, for inference on regression (e.g., surrogate functions)
 - $-\!\!-$ relaxations of calibration, to allow for continuous predictions

¹⁹Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure

Open questions — framework & definitions

- Are there interesting weaker definitions of validity, that are still meaningful without assumptions?
 - relaxations of conditional validity, for prediction
 - relaxations of marginal coverage, for inference on regression (e.g., surrogate functions)
 - relaxations of calibration, to allow for continuous predictions
- Are there meaningful ways to study distrib.-free hypothesis tests? (Known: impossible to test X ⊥ Y | Z distrib.-free, if Z nonatomic)¹⁹

¹⁹Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure

Open questions — framework & definitions

- Are there interesting weaker definitions of validity, that are still meaningful without assumptions?
 - relaxations of conditional validity, for prediction
 - relaxations of marginal coverage, for inference on regression (e.g., surrogate functions)
 - relaxations of calibration, to allow for continuous predictions
- Are there meaningful ways to study distrib.-free hypothesis tests? (Known: impossible to test $X \perp Y \mid Z$ distrib.-free, if Z nonatomic)¹⁹
- Are there methods that achieve a weak property for all *P*, & a stronger property for "nice" *P*?

¹⁹Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure