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Binary regression problem

Setting:

• Features X ∈ Rd , response Y ∈ {0, 1}
• Unknown distribution P = PX × πP

↗ ↖
Marginal distrib. of X πP(x) = P {Y = 1 | X = x}

• Training data (X1,Y1), . . . , (Xn,Yn)
iid∼ P

• Can we construct a confidence interval for πP(x),

with no assumptions on P?
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Background: smoothness & adaptivity

The challenge: data drawn from a smooth distribution

is also consistent with a highly non-smooth distribution
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Background: smoothness & adaptivity

Extensive literature in nonparametric inference & adaptivity:

Low 1997, Györfi et al 2006, Genovese & Wasserman 2008,

Cai et al 2014, Hall & Horowitz 2013, Carpentier 2015,

Szabó et al 2015, Picard & Tribouley 2000, Hoffmann & Nickl 2011,

Giné & Nickl 2010, Giné & Nickl 2016, Bull & Nickl 2013,

Wahba 1983, Li 1989, Cai & Low 2006, ....
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Background: smoothness & adaptivity

Extensive literature in nonparametric inference & adaptivity:

A partial summary...

If πP(x) is β-Hölder smooth with β known...

• Conf. int. width � n−
β

2β+d (e.g., via k-NN with k � n
2β

2β+d )

If πP(x) is β-Hölder smooth with β ∈ [a, b] and b ≤ 2a...

• Relax definition of coverage—cover π(x) for “most” x

•  Conf. int. width � n−
β

2β+d (adapts to β)

If πP(x) is β-Hölder smooth with β ∈ [a, b] and b > 2a...

• Adaptivity is impossible...

• ...unless assume stronger conditions to exclude difficult cases
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Background: smoothness & adaptivity

The challenge: data drawn from a smooth distribution

is also consistent with a highly non-smooth distribution,

and it’s impossible to estimate the smoothness of P
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Distribution-free coverage

Training data

{(Xi ,Yi )}i=1,...,n
 algorithm Ĉn  

Conf. intervals

{Ĉn(x)}x∈Rd

Definition

An algorithm Ĉn is a (1− α) distribution-free confidence interval

if for every distribution P,

P
{
πP(Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α

with respect to (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1)
iid∼ P.

a.k.a. “weakly valid probability estimators” (Vovk et al 2005)

(Related to distribution-free prediction — Papadopoulos et al 2002, Vovk et al 2005, Lei & Wasserman 2014,

Lei et al 2018, Sadinle et al 2019, Barber et al 2019, ....)
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Distribution-free coverage

Main question

Does there exist a distribution-free confidence interval Ĉn,

such that length(Ĉn(x)) → 0 for “nice” distributions P?

For a distribution P & coverage level 1− α...

lengthDFn,α(P) = inf
Distrib.-free

Ĉn at level 1− α

E
(Xi ,Yi )

iid∼P

[
length(Ĉn(Xn+1))

]
↗ ↖

Ĉn must have coverage

for every distribution P

What is Ĉn’s length

for a particular distribution P?
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Overview of new results

Our results study this problem in two settings...

• Part 1 — if PX is nonatomic (“never see the same X twice”)

Is distribution-free inference possible for binary regression?
arXiv:2004.09477

• Part 2 — if PX is discrete or mixed discrete+nonatomic

Distribution-free inference for regression: discrete, continuous, and in between
arXiv:2105.14075 (joint with Yonghoon Lee)
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Part 1: the nonatomic case

A trivial upper bound...

lengthDFn,α(P) ≤ 1− α

Proof: let Ĉn(x) =

[0, 1], with probability 1− α,

∅, with probability α.
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Part 1: the nonatomic case

Lower bound warmup: what if X ⊥⊥ Y with Y ∼ Bernoulli(0.5)?

●●

●●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●●

●●●

●

●

●

●●

●

●●●

●●

●

●●●●●●●●

●●●●

●●●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●●●●●●

●●●

●●

●

●

●

●●

●●●

●

●●●●●●

●●●

●

●

●●●

●●

●

●

●

●●●

●

●●●●

●●●●●

●●

●

●●

●

●●

●

●

●●●

●●●●●●

●

●●

●●●●●

●●

●

●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

π P
(x

)

11/31



Part 1: the nonatomic case

Lower bound warmup: what if X ⊥⊥ Y with Y ∼ Bernoulli(0.5)?

 If PX is nonatomic, then lengthDFn,α(P) ≥ 1− α

Proof idea: show that
1

2
P
{
t ∈ Ĉn(Xn+1)

}
+

1

2
P
{

1− t ∈ Ĉn(Xn+1)
}
≥ 1− α ∀t ∈ [0, 1]

πP (x)=0.5 for all x︷ ︸︸ ︷ πP (x)=t or πP (x)=1−t for all x︷ ︸︸ ︷

●●

●●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●●

●●●

●

●

●

●●

●

●●●

●●

●

●●●●●●●●

●●●●

●●●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●●●●●●

●●●

●●

●

●

●

●●

●●●

●

●●●●●●

●●●

●

●

●●●

●●

●

●

●

●●●

●

●●●●

●●●●●

●●

●

●●

●

●●

●

●

●●●

●●●●●●

●

●●

●●●●●

●●

●

●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

x

π P
(x

)

−1.0 −0.5 0.0 0.5 1.0

t

1 − t

●●

●●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●●●

●●

●

●

●●

●●●

●

●

●

●●

●

●●●

●●

●

●●●●●●●●

●●●●

●●●

●

●●

●

●

●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●●●●●●

●●●

●●

●

●

●

●●

●●●

●

●●●●●●

●●●

●

●

●●●

●●

●

●

●

●●●

●

●●●●

●●●●●

●●

●

●●

●

●●

●

●

●●●

●●●●●●

●

●●

●●●●●

●●

●

●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

x

π P
(x

)

−1.0 −0.5 0.0 0.5 1.0

t

1 − t

12/31



Part 1: the nonatomic case

Lower bound warmup: what if X ⊥⊥ Y with Y ∼ Bernoulli(0.5)?

 If PX is nonatomic, then lengthDFn,α(P) ≥ 1− α

Proof idea: show that
1

2
P
{
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Main result: lower bound

Key lemma
Let Z ∈ [0, 1] satisfy Z ⊥⊥ (X1,Y1), . . . , (Xn,Yn) and

E [Z | Xn+1] = πP(Xn+1).

Then if PX is nonatomic,

P
{
Z ∈ Ĉn(Xn+1)

}
≥ 1− α

Proof idea: compare the true distribution P:

X ∼ PX

Y |X ∼ Bernoulli(πP(X ))

with an equivalent distribution:

X ∼ PX

Z |X ∼ (any distrib. on [0, 1] with mean πP(X ))

Y |X ,Z ∼ Bernoulli(Z )
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Main result: lower bound

Theorem (simple case)

If P = PX × Bernoulli(t) (i.e., X ⊥⊥ Y ), and if PX is nonatomic,

then

lengthDFn,α(P) ≥ `(t, α).

↖
Does not vanish as n→∞

Proof idea: apply the Key Lemma to a random variable Z

that is a mixture of a point mass & a uniform
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Main result: lower bound

`(t, a) =



2(1− a)t, t ≤ 1
2
≤ a,

t/2a, 0 < t ≤ a < 1
2
,

1− a/2t, a < t ≤ 1
2
,

0, a = t = 0,

(symmetric), t ≥ 1
2
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Main result: lower bound

Theorem (general case)

For any P, if PX is nonatomic, then lengthDFn,α(P) ≥ Lα(P),

where

Lα(P) = inf
a:Rd→[0,1]

{
EP [`(πP(X ), a(X ))] : EP [a(X )] ≤ α

}
.

↖
Does not vanish as n→∞
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Main result: lower bound

Main question

Does there exist a distribution-free confidence interval Ĉn,

such that length(Ĉn(x)) → 0 for “nice” distributions P?

Answer:

• If PX is nonatomic, then no —

Lα(P) is an explicit lower bound on the length of Ĉn(Xn+1)
that depends only on the distrib. of πP(X ) & not on n

• Smoothness of x 7→ πP(x) doesn’t help! Worst case πP(X ) ≡ 0.5

• (Part 2 of this talk — what if PX is not nonatomic?)
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Main result: lower bound

An aside...

Key lemma
Let Z ∈ [0, 1] satisfy Z ⊥⊥ (X1,Y1), . . . , (Xn,Yn) and

E [Z | Xn+1] = πP(Xn+1).

Then

P
{
Z ∈ Ĉn(Xn+1)

}
≥ 1− α

A corollary: by taking Z = Yn+1,

P
{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α

⇒ any d.f. confidence interval is a d.f. prediction interval

(See Vovk et al 2005, Gupta, Podkopaev, & Ramdas 2020 for related results)

18/31



A matching upper bound?

Intuition...

To construct a d.f. confidence interval with length ≈ Lα(P)...

• Estimate πP(X ) using half of the data, & partition Rd into

bins X1 ∪ · · · ∪ XM , with πP(X ) ≈ constant in each bin

• Estimate P {Y = 1 | X ∈ Xm} in each bin w/ remaining data,

& use this to construct a C.I. (see paper for details)
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A matching upper bound?

Distribution-free upper bound

The proposed binning-based algorithm Ĉn satisfies

• Distribution-free validity, i.e., coverage ≥ 1− α w.r.t. P

• Near-optimal length if the partition is “good”:

EP

[
length(Ĉn(X ))

]
≤ Lα(P) +√

2α−1 · EP

[
|πP(X )− πm(X )|

]
+O

(√
M log n

αn

)
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Part 2: beyond the nonatomic case

Suppose PX is instead discrete.

At sample size n, intuitively separates into distinct regimes...

• Trivial — finitely many possible X ’s

(PX (x) � 1)

↘ build a C.I. for each x , with width � n−1/2

• Easy — each possible X value is observed many times

(PX (x)� n−1)

↘ build a C.I. for each x , with width � n
−1/2
x

• Medium — some X ’s are repeated, but most are unique

(n−2 � PX (x)� n−1)

↘ our initial guess: width � 1 — incorrect!

• Hard — w.h.p. the data set has no repeated X ’s

(PX (x)� n−2)

↘ indistinguishable from nonatomic, so width is � 1
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• Hard — w.h.p. the data set has no repeated X ’s

(PX (x)� n−2) ↘ indistinguishable from nonatomic, so width is � 1

21/31



Part 2: beyond the nonatomic case
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Part 2: beyond the nonatomic case

Our work is inspired by the literature on testing properties of

discrete distributions:

• Instance Optimal Learning, Valiant & Valiant

• Optimal Algorithms for Testing Closeness of Discrete Distributions,
Chan, Diakonikolas, Valiant, & Valiant

↘ p, q supported on M points

test p = q vs dTV(p, q) > ε

• Optimal Testing for Properties of Distributions,

Acharya, Daskalakis, & Kamath

• Testing Closeness With Unequal Sized Samples, Bhattacharya & Valiant

• Estimating Renyi Entropy of Discrete Distributions,

Acharya, Orlitsky, Suresh, & Tyagi

(Thanks to John Lafferty for suggesting this connection!)
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Effective support size

P might be discrete, nonatomic, or a mixture —

how to unify these three cases?

Mγ(PX ) = minimum # of points needed to capture ≥ 1− γ probability

• PX discrete, & supported on M points  Mγ(PX ) ≤ M

• PX nonatomic  Mγ(PX ) =∞
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Main result: lower bound

Theorem

For any P with πP(X ) ∈ [t, 1− t] almost surely,

lengthDFn,α(P) ≥ 1
3 t(1− t)(γ − α)2 ·min

{(
Mγ(PX )

)1/4

n1/2
, 1

}
.

↗
Vanishing width iff Mγ(PX )� n2

A more general version in the paper...

• The response Y can be ∈ [0, 1] rather than binary

→ now assume Var(Y |X ) ≥ c > 0 almost surely

• Can relax to: Var(Y |X ) ≥ c > 0 with probability > 1− (γ − α)
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Proof sketch for lower bound

The distribution P can be described as:

X

• Draw X ∼ PX

• Draw Z ∼ Bernoulli(0.5)

X

• Draw the response Y :If Z = 1, draw Y conditional on {Y ≥ Median(Y |X )}

If Z = 0, draw Y conditional on {Y ≤ Median(Y |X )}

0.5 + ε · A(X ), where A(x)
iid∼ {±1} for each x

Pε

Key lemma

dTV(n samples from P, n samples from Pε) ≤ 2nε2

√∑
x

p(x)2

↗
= o(1) if p(x) . 1/M and ε� M1/4

n1/2
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Proof sketch for lower bound

Distribution-free coverage ⇒ Ĉ (Xn+1) must contain πP(Xn+1)

Key lemma ⇒ since P & Pε are indistinguishable,

Ĉ (Xn+1) must also contain πPε(Xn+1)

Since |πP(x)− πPε(x)| � ε, this proves width(Ĉ (Xn+1))& ε
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A matching upper bound?

Suppose PX is supported on M points (this is generalized in the paper)

& we have an estimate π of the true πP .

Define:

Z =
∑

x observed nx ≥ 2 times

(nx − 1) ·
(
(ȳx − π(x))2 − n−1

x s2
x

)
.

↑ ↑
sample mean & var. for the Y values at this x

E=(πP(x)−π(x))2︷ ︸︸ ︷

(Inspired by similar statistics in the discrete testing literature,

e.g. Optimal Algorithms for Testing Closeness of Discrete Distributions,

Chan, Diakonikolas, Valiant, & Valiant)
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A matching upper bound?

Construct the C.I.:

Ĉ (Xn+1) = π(Xn+1)±O

(
M1/2

n
·

(
Z 1/2 +

(
# x ’s observed

≥ 2 times

)1/4
))

↑ ↑
E � n

M1/2 · ‖πP − π‖ E � n1/2

M1/4

⇒ C.I. width � ‖πP − π‖+ M1/4

n1/2
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A matching upper bound?

Suppose PX is discrete, and we draw n data points.

Intuitively separates into distinct regimes...

• Trivial — finitely many possible X ’s

(PX (x) � 1) ↘ build a C.I. for each x , with width � n−1/2

• Easy — each possible X value is observed many times

(PX (x)� n−1) ↘ build a C.I. for each x , with width � n
−1/2
x

• Medium — some X ’s are repeated, but most are unique

(n−2 � PX (x)� n−1) ↘ our initial guess: width � 1 — incorrect!

• Hard — w.h.p. the data set has no repeated X ’s

(PX (x)� n−2) ↘ indistinguishable from nonatomic, so width is � 1
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A matching upper bound?

Intuition for the “medium” regime...

• Suppose PX is uniform over M = na many points, for

a ∈ (1, 2)

• � n2

M = n2−a many X values are observed multiple times

 we can estimate our error on this subset

• These X values are a random sample from PX

 we can estimate our error on average over P
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Summary & open questions

• If features X are nonatomic,

distribution-free inference is “impossible” even as n→∞

• Discrete X behaves like nonatomic X if effective support size � n2

• Distribution-free inference becomes meaningful

once effective support size is � n2

Lots of open questions...

• Are there interesting properties weaker than distrib.-free coverage,

that are still meaningful without assumptions?

• Are there methods that achieve a weak property for all P,

& a stronger property for “nice” P?

Thank you!
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