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Binary regression problem

Setting:
e Features X € RY, response Y € {0,1}
e Unknown distribution P = Px x mp

Marginal distrib. of X mp(x) =P{Y =1]| X =x}
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Binary regression problem

Setting:
e Features X € RY, response Y € {0,1}
e Unknown distribution P = Px x mp

Marginal distrib. of X mp(x) =P{Y =1| X =x}
e Training data (X1, Y1),...,(Xn, V) S P

e Can we construct a confidence interval for mp(x),
with no assumptions on P?
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Background: smoothness & adaptivity

The
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challenge: data drawn from a smooth distribution

is also consistent with a highly non-smooth distribution
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Background: smoothness & adaptivity

Extensive literature in nonparametric inference & adaptivity:

Low 1997, Gyorfi et al 2006, Genovese & Wasserman 2008,

Cai et al 2014, Hall & Horowitz 2013, Carpentier 2015,

Szabé et al 2015, Picard & Tribouley 2000, Hoffmann & Nickl 2011,
Giné & Nickl 2010, Giné & Nickl 2016, Bull & Nickl 2013,

Wahba 1983, Li 1989, Cai & Low 2006, ....
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Background: smoothness & adaptivity

Extensive literature in nonparametric inference & adaptivity:
A partial summary...

If 7p(x) is B-Holder smooth with 5 known...

5 28
e Conf. int. width < n" 25+9 (e.g., via k-NN with k =< n2p+d)
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Extensive literature in nonparametric inference & adaptivity:
A partial summary...

If 7p(x) is B-Holder smooth with 5 known...

5 28
e Conf. int. width < n" 25+9 (e.g., via k-NN with k =< n2p+d)

If mp(x) is B-Holder smooth with 5 € [a, b] and b < 2a...
e Relax definition of coverage—cover m(x) for “most” x

—__B
e ~ Conf. int. width < n™ 25%4 (adapts to j3)
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Background: smoothness & adaptivity

Extensive literature in nonparametric inference & adaptivity:
A partial summary...

If 7p(x) is B-Holder smooth with 5 known...

5 28
e Conf. int. width < n" 25+9 (e.g., via k-NN with k =< n2p+d)

If mp(x) is B-Holder smooth with 5 € [a, b] and b < 2a...
e Relax definition of coverage—cover m(x) for “most” x

—__B
e ~ Conf. int. width < n™ 25%4 (adapts to j3)

If mp(x) is B-Holder smooth with 5 € [a, b] and b > 2a...
e Adaptivity is impossible...

e ...unless assume stronger conditions to exclude difficult cases
5/31



Background: smoothness & adaptivity

The

i(x)

00 02 04 06 08 1.0

challenge: data drawn from a smooth distribution
is also consistent with a highly non-smooth distribution,
and it's impossible to estimate the smoothness of P
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Distribution-free coverage

Training dat C
raining data algorithm C,

{(X,‘, \/i)}i:L...,n

Definition

Conf. intervals
{Cn(x) } xere

An algorithm G, is a (1 — «) distribution-free confidence interval

if for every distribution P,

P {WP(X,,H) e 6n(x,,+1)} >1-«

iid

with respect to (Xl, Yl), R (Xn, Yn), (Xn+1, Yn+1) ~ P.

a.k.a. "weakly valid probability estimators” (Vovk et al 2005)

(Related to distribution-free prediction — Papadopoulos et al 2002, Vovk et al 2005, Lei & Wasserman 2014,

Lei et al 2018, Sadinle et al 2019, Barber et al 2019, ....)
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Distribution-free coverage

Main question

Does there exist a distribution-free confidence interval 6,,,
such that length(Cph(x)) — 0 for “nice” distributions P?
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Distribution-free coverage

Main question

Does there exist a distribution-free confidence interval 6,,,
such that length(Cph(x)) — 0 for “nice” distributions P?

For a distribution P & coverage level 1 — a...

lengthDF,, ,(P) = _inf  E _ ., [len th(Co(Xns1
& na(P) _ Distrib.-free (X, Yi)~P gth(Ca(Xn+1))
C,atlevel 1 — o
(.A",, must have coverage What is 6n's length
for every distribution P for a particular distribution P?
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Overview of new results

Our results study this problem in two settings...

e Part 1 — if Px is nonatomic ( “never see the same X twice")

Is distribution-free inference possible for binary regression?
arXiv:2004.09477

e Part 2 — if Px is discrete or mixed discrete4+-nonatomic

Distribution-free inference for regression: discrete, continuous, and in between
arXiv:2105.14075 (joint with Yonghoon Lee)
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Part 1: the nonatomic case

A trivial upper bound...

lengthDF, ,(P) <1 -«

~ 0,1], ith probability 1 — «,
Proof: let Cy(x) = 0.1], with p Y
a, with probability a.
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Part 1: the nonatomic case

Lower bound warmup: what if X L Y with Y ~ Bernoulli(0.5)?

T5(x)
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Part 1: the nonatomic case

Lower bound warmup: what if X L Y with Y ~ Bernoulli(0.5)?
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Part 1: the nonatomic case

Lower bound warmup: what if X L Y with Y ~ Bernoulli(0.5)?

~ If Px is nonatomic, then IengthDana(P) >1—«

Proof idea: show that

%]P’{t e 6‘n(xn+1)} + %]P’{l —te E"(Xnﬂ)} >1-a Vtelo,1]

7p(x)=0.5 for all x

7p(x)=t or wp(x)=1—t for all x

=g

o(x)

-1.0 -0.5 0.0 05 1.0
X
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Main result: lower bound

Key lemma
Let Z € [0,1] satisfy Z L (X1, Y1),...,(Xn, Ya) and

E[Z | Xns1] = mp(Xnt1)-
Then if Px is nonatomic,

IP’{Z € 6,,(Xn+1)} >1—a
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Main result: lower bound

Key lemma
Let Z € [0,1] satisfy Z L (X1, Y1),...,(Xn, Ya) and

E[Z | Xata] = mp(Xn1)-
Then if Px is nonatomic,
P{ZeC(Xu)}21-0

Proof idea: compare the true distribution P:
X ~ Px
Y |X ~ Bernoulli(mp(X))

with an equivalent distribution:
X ~ Px
Z|X ~ (any distrib. on [0, 1] with mean 7p(X))
Y|X, Z ~ Bernoulli(Z)
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Main result: lower bound

Theorem (simple case)
If P = Px x Bernoulli(t) (i.e., X 1L Y), and if Px is nonatomic,
then
lengthDF, ,(P) > {(t, ).
N

Does not vanish as n — oo
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Main result: lower bound

Theorem (simple case)

If P = Px x Bernoulli(t) (i.e., X 1L Y), and if Px is nonatomic,

then
lengthDF, ,(P) > {(t, ).
N

Does not vanish as n — oo

Proof idea: apply the Key Lemma to a random variable Z
that is a mixture of a point mass & a uniform

14/31



Main

result: lower bound
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Main result: lower bound

Theorem (general case)
For any P, if Px is nonatomic, then lengthDF, ,(P) > L.(P),
where

La(P) = inf {Ep [tmp(X),a(X))] : Ep[a(X)] < a}.

N

Does not vanish as n — oo
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Main result: lower bound

Main question

Does there exist a distribution-free confidence interval 6,,,
such that length(C,(x)) — 0 for “nice” distributions P?
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Main result: lower bound

Main question

Does there exist a distribution-free confidence interval C,,

~

such that length(C,(x)) — 0 for “nice” distributions P?

Answer:

e If Px is nonatomic, then no —

Lo(P) is an explicit lower bound on the length of 6,,(X,,+1)
that depends only on the distrib. of mp(X) & not on n

e Smoothness of x — 7p(x) doesn't help! Worst case mp(X) = 0.5

e (Part 2 of this talk — what if Px is not nonatomic?)
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Main result: lower bound

An aside...

Key lemma
Let Z € [0,1] satisfy Z L (X1, Y1),...,(Xh, Ya) and

E[Z | Xp+1] = mp(Xnt1)-

Then

A corollary: by taking Z = Y11,
P{Y,H_]_ & 6,1(Xn+1)} Z l—«o

= any d.f. confidence interval is a d.f. prediction interval

(See Vovk et al 2005, Gupta, Podkopaev, & Ramdas 2020 for related results)
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A matching upper bound?

Intuition...

To construct a d.f. confidence interval with length ~ L,(P)...

e Estimate mp(X) using half of the data, & partition RY into
bins X1 U - -- U X, with mp(X) = constant in each bin

e Estimate P{Y =1 | X € &},,} in each bin w/ remaining data,
& use this to construct a C.I. (see paper for details)
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A matching upper bound?

Distribution-free upper bound

The proposed binning-based algorithm (_A',, satisfies
e Distribution-free validity, i.e., coverage > 1 — a w.r.t. P
e Near-optimal length if the partition is “good”:

Ep [Iength(/C\n(X))] < La(P) +

V2071 - Ep [[mp(X) — Mmpx)l] + O ( Mlog ”)

an
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Part 2: beyond the nonatomic case

Suppose Py is instead discrete.

At sample size n, intuitively separates into distinct regimes...
e Trivial — finitely many possible X's

(Px(x) = 1)

e Easy — each possible X value is observed many times
(Px(x) > n~1)

e Medium — some X's are repeated, but most are unique
(n72 < Px(x) < n71)

e Hard — w.h.p. the data set has no repeated X's
(Px(x) < n?)
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Suppose Py is instead discrete.
At sample size n, intuitively separates into distinct regimes...

e Trivial — finitely many possible X's
(Px(X) = 1) ¢ build a C.I. for each x, with width = n—1/2

e Easy — each possible X value is observed many times
(Px(X) > n’l) ™ build a C.I. for each x, with width =< n;l/z

e Medium — some X's are repeated, but most are unique
(n72 < Px(x) < n71)

e Hard — w.h.p. the data set has no repeated X's
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Part 2: beyond the nonatomic case

Suppose Py is instead discrete.
At sample size n, intuitively separates into distinct regimes...

e Trivial — finitely many possible X's
(Px(X) = 1) ¢ build a C.I. for each x, with width = n—1/2

e Easy — each possible X value is observed many times
(Px(X) > n’l) ™ build a C.I. for each x, with width =< n;l/z

e Medium — some X's are repeated, but most are unique
(n_2 < Px(X) < n_l) < our initial guess: width =< 1 — incorrect!

e Hard — w.h.p. the data set has no repeated X's
(Px(X) < nfz) ™ indistinguishable from nonatomic, so width is =< 1
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Part 2: beyond the nonatomic case

Our work is inspired by the literature on testing properties of

discrete distributions:

Instance Optimal Learning, Valiant & Valiant

Optimal Algorithms for Testing Closeness of Discrete Distributions,
Chan, Diakonikolas, Valiant, & Valiant

Optimal Testing for Properties of Distributions,
Acharya, Daskalakis, & Kamath

Testing Closeness With Unequal Sized Samples, Bhattacharya & Valiant

Estimating Renyi Entropy of Discrete Distributions,
Acharya, Orlitsky, Suresh, & Tyagi

(Thanks to John Lafferty for suggesting this connection!)
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Part 2: beyond the nonatomic case

Our work is inspired by the literature on testing properties of
discrete distributions:

e [nstance Optimal Learning, Valiant & Valiant

e Optimal Algorithms for Testing Closeness of Discrete Distributions,
Chan, Diakonikolas, Valiant, & Valiant ™ p, q supported on M points

test p=q vs drv(p,q) > ¢

e Optimal Testing for Properties of Distributions,
Acharya, Daskalakis, & Kamath

e Testing Closeness With Unequal Sized Samples, Bhattacharya & Valiant

e Estimating Renyi Entropy of Discrete Distributions,
Acharya, Orlitsky, Suresh, & Tyagi

(Thanks to John Lafferty for suggesting this connection!)
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Effective support size

P might be discrete, nonatomic, or a mixture —
how to unify these three cases?

M.,(Px) = minimum # of points needed to capture > 1 — ~ probability

e Px discrete, & supported on M points ~» M, (Px) < M

e Px nonatomic ~» M,(Px) = oo

23/31



Main result: lower bound

Theorem
For any P with mp(X) € [t,1 — t] almost surely,

1/4
lengthDF, ,(P) > $t(1 — t)(y — @)? - min {%’ 1} .

/

Vanishing width iff M, (Px) < n?
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Main result: lower bound

Theorem
For any P with mp(X) € [t,1 — t] almost surely,

1/4
lengthDF, ,(P) > $t(1 — t)(y — @)? - min {(MV(HPI—/);)), 1} _

/

Vanishing width iff M, (Px) < n?

A more general version in the paper...

e The response Y can be € [0,1] rather than binary
— now assume Var(Y|X) > ¢ > 0 almost surely

e Can relax to: Var(Y|X) > ¢ > 0 with probability > 1 — (v — «)
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Proof sketch for lower bound

The distribution P can be described as:
e Draw X ~ Py
e Draw Z ~ Bernoulli(0.5)
e Draw the response Y:
If Z=1, draw Y conditional on {Y > Median(Y|X)}
If Z =0, draw Y conditional on {Y < Median(Y|X)}

25/31



Proof sketch for lower bound

o P .
The distribution X can be described as:

e Draw X ~ Px 0.5+ ¢ - A(X), where A(x) 4 {£1} for each x

e Draw Z ~ Bernoulli(0%6)

e Draw the response Y:
If Z=1, draw Y conditional on {Y > Median(Y|X)}
If Z =0, draw Y conditional on {Y < Median(Y|X)}
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Proof sketch for lower bound

o P .
The distribution X can be described as:

e Draw X ~ Px 0.5+ ¢ - A(X), where A(x) ' {1} for each x

e Draw Z ~ Bernoulli(0X%)
e Draw the response Y:

If Z=1, draw Y conditional on {Y > Median(Y|X)}
If Z =0, draw Y conditional on {Y < Median(Y|X)}

Key lemma

drv(n samples from P, n samples from P.) < 2ne> /Zp
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Proof sketch for lower bound

o P .
The distribution X can be described as:

e Draw X ~ Px 0.5+ ¢ - A(X), where A(x) ' {1} for each x

e Draw Z ~ Bernoulli(0X%)
e Draw the response Y:

If Z=1, draw Y conditional on {Y > Median(Y|X)}
If Z =0, draw Y conditional on {Y < Median(Y|X)}

Key lemma

drv(n samples from P, n samples from P.) < 2ne> /Zp

= 0(1) if p(x) < 1/M and e < M/ 25/31
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Proof sketch for lower bound

Distribution-free coverage = C(Xp+1) must contain mp(Xp41)

Key lemma = since P & P, are indistinguishable,
C(Xn+1) must also contain mp_(Xpt1)

Since |mp(x) — mp_(x)| < €, this proves width(f(Xn+1))Z €
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A matching upper bound?

Suppose Py is supported on M points (this is generalized in the paper)
& we have an estimate 7 of the true 7p.

Define:

Z= Y (1) (k7)) ng'sd).

x observed ny > 2 times T T

sample mean & var. for the Y values at this x
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A matching upper bound?

Suppose Px is supported on M points (this is generalized in the paper)
& we have an estimate 7 of the true 7p.

Define: E=(mp(x)—m(x))?

Z= Y (=) (G- P = ).

x observed ny > 2 times T T

sample mean & var. for the Y values at this x

(Inspired by similar statistics in the discrete testing literature,
e.g. Optimal Algorithms for Testing Closeness of Discrete Distributions,
Chan, Diakonikolas, Valiant, & Valiant)
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A matching upper bound?

Construct the C.I.:

~ M/2 1/2 # x's observed o
C(Xny1) = 1(Xnt1) £ O o 20+ S 7 tities
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A matching upper bound?

Construct the C.I.:

~ M/2 1/2 # x's observed v
C(Xny1) = 1(Xnt1) £ O o 20+ S 7 tities

T T

1/2
E = ﬁ'“WP—W”

— Mmi/4

28/31



A matching upper bound?

Construct the C.I.:

~ M/2 1/2 # x's observed o
C(Xny1) = 1(Xnt1) £ O o 20+ S 7 tities

—
_>

= C.I. width < [[rp — 7] + M
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A matching upper bound?

Suppose Px is discrete, and we draw n data points.
Intuitively separates into distinct regimes...

e Trivial — finitely many possible X's
(Px(x) <1) “ build a C.I. for each x, with width < n=1/2

e Easy — each possible X value is observed many times
(Px(x) > n71) ™ build a C.I. for each x, with width = ny /2

e Medium — some X's are repeated, but most are unique
(n_2 < Px(X) < n_l) ™ our initial guess: width =< 1 — incorrect!

e Hard — w.h.p. the data set has no repeated X's

(Px(X) < n*2) ™ indistinguishable from nonatomic, so width is =< 1
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A matching upper bound?

Intuition for the "medium” regime...

e Suppose Px is uniform over M = n? many points, for
ae(1,2)

o =T —p2-a

2 o o
W many X values are observed multiple times

~~ we can estimate our error on this subset

e These X values are a random sample from Px
~~ we can estimate our error on average over P
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Summary & open questions

e |f features X are nonatomic,
distribution-free inference is “impossible” even as n — oo

e Discrete X behaves like nonatomic X if effective support size > n®

e Distribution-free inference becomes meaningful
once effective support size is < n?

Lots of open questions...

e Are there interesting properties weaker than distrib.-free coverage,
that are still meaningful without assumptions?

e Are there methods that achieve a weak property for all P,
& a stronger property for "nice” P?

Thank you!
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