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Intro: testing conditional independence

confounders Z

features X response Y?

Classical (parametric) approach:

• Assume a parametric model such as Y | X ,Z ∼ f (· ;α>X + β>Z )

• Parametric inference to test H0 : α = 0

Model-X approach a.k.a. Conditional Randomization Test (Candès et al 2018)

• Known distribution of X | Z (distrib. of Y unknown)

• Choose function T (X ;Y ,Z ) that measures association

• Resample copies X̃(1), . . . , X̃(M) iid∼ (distrib. of X | Z )

 pval =
1 +

∑
m 1{T (X̃(m);Y ,Z ) ≥ T (X ;Y ,Z )}

1 + M
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Intro: testing conditional independence

confounders Z

features X response Y?

Model-X approach via sufficient statistics (Huang & Janson 2019)

• Distribution of X | Z is only partially known

• By conditioning on sufficient statistic S(X ,Z ),

can resample copies X̃(1), . . . , X̃(M) iid∼ (distrib. of X | S(X ,Z ))

& compute p-value for test statistic T as before

• Example: canonical GLMs

— Xi ∼ exp
{
Xi · Z>i θ − a(Z>i θ)

}
, i = 1, . . . , n, with θ unknown

— S(X ,Z ) =
∑

i XiZi is suff. stat. for X = (X1, . . . ,Xn)
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Intro: testing goodness-of-fit (GoF)

More generally...

Goodness-of-fit test
Testing H0: X ∼ Pθ for some θ ∈ Θ,

where {Pθ : θ ∈ Θ} is a parametric family

Conditional independence testing can be a special case:

• Assume X | Z ∼ Pθ(·|Z ) for some θ ∈ Θ

• Null hypothesis H0 : X ⊥⊥ Y | Z

• Equivalently... H0: X | Y ,Z ∼ Pθ(·|Z ) for some θ ∈ Θ

• Note: we condition on Y and Z (i.e., treat as fixed)
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Intro: testing goodness-of-fit (GoF)

A general framework:

• Choose any test statistic T : X → R

• Draw copies X̃ (1), . . . , X̃ (M)

• Compute rank-based p-value

pval =
1 +

∑
m 1{T (X̃(m)) ≥ T (X )}

1 + M

• If X , X̃ (1), . . . , X̃ (M) are exchangeable under H0  p-value is valid
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Co-sufficient sampling (CSS)

Co-sufficient sampling

Sample copies X̃(m) ∼ (distrib. of X | S(X )),

where S(X ) is a sufficient statistic for the family {Pθ : θ ∈ Θ}

Can be applied to:

1. Test goodness-of-fit (GoF)

(Engen & Lilleg̊ard 1997, Lockhart et al 2007, Stephens 2012, Hazra 2013 ....)

2. Test conditional independence (special case of GoF)

(Rosenbaum 1984, Kolassa 2003, Huang & Janson 2019)

3. Construct conf. intervals for a parameter of interest

(by inverting GoF tests)
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Co-sufficient sampling (CSS)

Co-sufficient sampling

Sample copies X̃(m) ∼ (distrib. of X | S(X )),

where S(X ) is a sufficient statistic for the family {Pθ : θ ∈ Θ}

Permutation tests are an example of CSS

• H0: X1, . . . ,Xn
iid∼ D for D ∈ (some set)

• The order statistics X(1) ≤ · · · ≤ X(n) are sufficient under the null

• Permutation test ⇔ resampling X conditional on order statistics

• Application: testing X ⊥⊥ Y

H0: conditional on Y1, . . . ,Yn, it holds that X1, . . . ,Xn are i.i.d.
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Co-sufficient sampling (CSS)

Limitation of co-sufficient sampling... no power in many settings!

Example—logistic model:

• X = (X1, . . . ,Xn) ∈ {0, 1}n, Z = (Z1, . . . ,Zn) ∈ (Rk)n

• If the Zi ’s are in general position,

then
∑

i XiZi ∈ Rk uniquely determines X

(so if we resample, will have X̃(1) = · · · = X̃(M) = X  zero power)
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Co-sufficient sampling (CSS)

Limitation of co-sufficient sampling... no power in many settings!

For many other models, the minimal sufficient statistic S(X )

is essentially the data itself, e.g.,

• Mixture of Gaussians or mixture of GLMs

• Non-canonical GLMs

• Heavy tailed distributions (e.g., multivariate t)

• Models with missing or corrupted data
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Approximate sufficiency

For a family {Pθ : θ ∈ Θ}, a function S(X ) is a sufficient statistic if

(distrib. of X | S(X ), X ∼ Pθ) = (distrib. of X | S(X ), X ∼ Pθ′) ∀θ, θ′.

Asymptotic sufficiency: (Le Cam, Wald, ...)

Informally...

(distrib. of X | S(X ), X ∼ Pθ) ≈ (distrib. of X | S(X ), X ∼ Pθ′) ∀θ, θ′.

• Under regularity conditions, S(X ) = θ̂MLE(X ) is asymp. suff.
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Approximate co-sufficient sampling (aCSS)

Main idea:

• Let θ̂ ∈ Θ be an approximate MLE given the data X

• Let pθ(·|θ̂) = distrib. of X | θ̂, if marginally X ∼ Pθ
 under the null, X | θ̂ ∼ pθ0 (·|θ̂) for the unknown true θ0

• Sample copies X̃ (1), . . . , X̃ (M) from pθ̂(·|θ̂) ≈ pθ0 (·|θ̂)︸ ︷︷ ︸
by approx. sufficiency

X , X̃ (1), . . . , X̃ (M) ≈ exchangeable under H0  p-value is ≈ valid
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Approximate co-sufficient sampling (aCSS)

Distance to exchangeability

dexch(X , X̃ (1), . . . , X̃ (M)) = inf
Exch. distrib.
D on XM+1

{
dTV

(
(X , X̃ (1), . . . , X̃ (M)),D

)}

For any test statistic T (X ), the p-value

pval =
1 +

∑
m 1{T (X̃(m)) ≥ T (X )}

1 + M

satisfies

P {pval ≤ α} ≤ α + dexch(X , X̃ (1), . . . , X̃ (M)).
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aCSS algorithm

• Step 1: choose a test statistic T : X → R

• Step 2: observe data X , and compute an approximate MLE θ̂

• Step 3: sample copies X̃(1), . . . , X̃(M) from ≈ distribution of X | θ̂

• Step 4: compute a rank-based p-value to test H0:

pval =
1 +

∑
m 1{T (X̃(m)) ≥ T (X )}

1 + M
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aCSS algorithm

• Step 2: observe data X , and compute an approximate MLE θ̂

Ideally would like to minimize

L(θ;X ,W ) = L(θ;X )︸ ︷︷ ︸
penalized neg. log-likelihood
− log f (X ;θ)+R(θ)

+ σ ·W>θ︸ ︷︷ ︸
perturb with W ∼ N (0, 1

d Id )

(choose σ � n1/2)

(see also Tian & Taylor 2018—random perturbation for selective inference)

But... what if nonconvex? what if no global minimum?

— Function θ̂ : X × Rd → Θ, returns θ̂(X ,W ).

— If θ̂(X ,W ) is a strict SOSP of L(θ;X ,W ), proceed to next step.

— Otherwise return X̃(1) = · · · = X̃(M) = X  pval = 1.
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aCSS algorithm

• Step 3: sample copies X̃(1), . . . , X̃(M) from ≈ distribution of X | θ̂

Density of X | θ̂, conditional on the event that θ̂(X ,W ) is strict SOSP:

∝ f (x ; θ0) · exp

{
−‖∇θL(θ̂; x)‖

2σ2/d

}
· det

(
∇2
θL(θ̂; x)

)
· 1x∈X

θ̂

↖
support of X |θ̂

θ0 unknown  use θ̂ as plug-in estimate:

∝ f (x ; θ̂) · exp

{
−‖∇θL(θ̂; x)‖

2σ2/d

}
· det

(
∇2
θL(θ̂; x)

)
· 1x∈X

θ̂

If sampling directly is impossible,

can use an exchangeable form of MCMC (Besag & Clifford 1989)
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Type I error guarantee

Assumption 1: regularity conditions

• Θ ⊆ Rd convex & open

• Pθ has positive density f (·; θ) w.r.t. base measure νX for all θ ∈ Θ

• Log-likelihood log f (x ; θ) & penalty R(θ) are continuously twice diff.
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Type I error guarantee

Assumption 2: approximate MLE

For X ∼ Pθ0 and W ∼ N (0, 1
d Id), with prob. at least 1− δ,

‖θ̂(X ,W )− θ0‖ ≤ r and θ̂(X ,W ) is a strict SOSP of L(θ;X ,W ).

Assumption 3: Hessian of the log-likelihood

E

[
exp

{
sup

θ∈B(θ0,r)∩Θ

r2‖∇2 log f (X ; θ)− E
[
∇2 log f (X ; θ)

]
‖

}]
≤ eε

In standard settings with n independent observations...

r , ε, δ = Õ(n−1/2)
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Type I error guarantee

Theorem
Under Assumptions 1, 2, & 3, the copies produced by aCSS satisfy

dexch(X , X̃ (1), . . . , X̃ (M)) ≤ 3σr + δ + ε

under H0.

Therefore, for any test statistic T , Type I error for testing H0 satisfies

P {pval ≤ α} ≤ α + 3σr + δ + ε

↗
Excess Type I error should be o(1)...

• r , δ, ε � n−1/2 from the assumptions

• σ = noise level, chosen by analyst

→ choose σ � nc for some c ∈ [0, 1
2 )
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Examples

Examples where CSS has no power, but aCSS assumptions hold:

• Canonical GLMs such as logistic regression (low-dim.):

Xi
⊥⊥∼ Bernoulli

(
eZ

>
i β

1 + eZ
>
i β

)
for unknown β

• Two-sample difference-of-means (the Behrens–Fisher problem):

Xi
iid∼ N (µX , σ

2
X ), Yi

iid∼ N (µY , σ
2
Y ), test H0 : µX = µY

(An aCSS-like approach for this problem was considered by Lilleg̊ard 2001)
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Examples

Examples where CSS has no power, but aCSS assumptions hold:

• Spatial process on integer lattice: for unknown ρ,

X ∼ N (0,Σ) where Σij = ρDij for known pairwise distances Dij

• Multivariate t distribution (low-dim.):

Xi
iid∼ tγ(0,Σ) for known γ & unknown Σ

• And maybe missing data, latent variables, and more ...
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Simulations

Compare to oracle method that knows θ0:

• Sample copies X̃ (m) iid∼ Pθ0

• Compute p-value with same statistic T (x)

22/27
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Sampling

Recall: need to sample copies X̃ (m) from

∝ f (x ; θ̂) · exp

{
−‖∇θL(θ̂; x)‖

2σ2/d

}
· det

(
∇2
θL(θ̂; x)

)
· 1x∈X

θ̂

Two exchangeable MCMC strategies (Besag & Clifford 1989)

X X̃ ∗

X̃ (1)

X̃ (2)

X̃ (3)

. . .

X̃ (M−2)

X̃ (M−1)

X̃ (M)

latent hub

X̃ (4) X̃ (2) X X̃ (1) . . . X̃ (M) X̃ (3)

Random permutation of M + 1 positions

• Run Metropolis–Hastings, where f (x ; θ̂) stationary for proposal distrib.

• e.g., if X consists of n indep. observations (i.e., f (x ; θ̂) =
∏n

i=1 fi (xi ; θ̂)),

can choose proposal distrib. = resample s of n observations
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Proof sketch for Theorem

Need to bound dexch(X , X̃ (1), . . . , X̃ (M))

(1) Calculate joint distribution:
θ̂ ∼ (marginal distrib. of θ̂)

X | θ̂ ∼ pθ0 (·|θ̂)

X̃(m) | X , θ̂ ∼ pθ̂ (·|θ̂)

=⇒ dexch(X , X̃ (1), . . . , X̃ (M)) ≤ Eθ̂
[
dTV

(
pθ0 (·|θ̂), pθ̂ (·|θ̂)

)]
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Proof sketch for Theorem

(2) To bound dTV:

pθ̂ (X |θ̂)

pθ0 (X |θ̂)
∝ f (X ; θ̂ )

f (X ; θ0)
⇒

pθ̂ (X |θ̂)

pθ0 (X |θ̂)
=

f (X ;θ̂ )
f (X ;θ0)

Epθ0
(·|θ̂)

[
f (X ;θ̂ )
f (X ;θ0)

]

⇒ dTV

(
pθ0 (·|θ̂), pθ̂ (·|θ̂)

)
= Epθ0

(·|θ̂)


1−

f (X ;θ̂ )
f (X ;θ0)

Epθ0
(·|θ̂)

[
f (X ;θ̂ )
f (X ;θ0)

]


+


So, we need to show that f (X ;θ̂ )

f (X ;θ0) is ≈ constant over distrib. X |θ̂.
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Proof sketch for Theorem

log

(
f (X ; θ̂ )

f (X ; θ0)

)
= −(θ0−θ̂)>∇θ log f (X ; θ̂)−1

2
(θ0−θ̂)>∇2

θ log f (X ; θ̃)(θ0−θ̂)

=⇒

∣∣∣∣∣log

(
f (X ; θ̂ )

f (X ; θ0)

)
+

1

2
(θ0 − θ̂)>Eθ0

[
∇2
θ log f (X ; θ̃)

]
(θ0 − θ̂)

∣∣∣∣∣
≤ r · ‖∇θ log f (X ; θ̂)‖︸ ︷︷ ︸

=σ‖W‖�σ

+
1

2
· r2
∥∥∥∇2

θ log f (X ; θ̃)− Eθ0

[
∇2
θ log f (X ; θ̃)

]∥∥∥︸ ︷︷ ︸
�ε by Asm. 3

↗
‖θ0 − θ̂‖ ≤ r

with prob. ≥ 1− δ by Asm. 2

Rearrange  
dexch(X , X̃ (1), . . . , X̃ (M)) ≤ Eθ̂

[
dTV

(
pθ0 (·|θ̂), pθ̂ (·|θ̂)

)]
≤ 3σr + δ + ε
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Summary & open questions

• Summary: aCSS can test goodness-of-fit by

sampling nearly-exchangeable copies of the data,

in a much broader range of settings than CSS

• How to choose σ to balance Type I error & power?

• Connections to Bayesian methods?

• Apply to high dimensional regression / covariance estimation?

• Apply to missing data / latent variables / models with singularities?

• Extend to model-X knockoffs?

Thank you!
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