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Intro: testing conditional independence

confounders Z

T

features X ------ Sococe response Y

Classical (parametric) approach:

e Assume a parametric model such as Y | X, Z ~ f(-;a' X + 37 2Z)

e Parametric inference to test Hy : o =0
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Intro: testing conditional independence

confounders Z

T

features X ------ Sococe response Y

Classical (parametric) approach:

e Assume a parametric model such as Y | X, Z ~ f(-;a' X + 37 2Z)

e Parametric inference to test Hy : o =0

Model-X approach a.k.a. Conditional Randomization Test (Candeset al 2018)

e Known distribution of X | Z  (distrib. of Y unknown)
e Choose function T(X; Y, Z) that measures association
e Resample copies X1, ..., XM S (distrib. of X | Z)

1+ {T(XM;Y,2)> T(X;Y,2)}
1+M 3/27
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Intro: testing conditional independence

confounders Z

T

features X ------ Sococe response Y

Model-X approach via sufficient statistics (Huang & Janson 2019)

e Distribution of X | Z is only partially known

e By conditioning on sufficient statistic S(X, Z),
can resample copies X, ... X(M) £ (distrib. of X | S(X, Z))
& compute p-value for test statistic T as before
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Intro: testing conditional independence

confounders Z

T

features X ------ Sococe response Y

Model-X approach via sufficient statistics (Huang & Janson 2019)

e Distribution of X | Z is only partially known
e By conditioning on sufficient statistic S(X, Z),
can resample copies X, ... X(M) £ (distrib. of X | S(X, Z))
& compute p-value for test statistic T as before
e Example: canonical GLMs
— X; ~ exp {X,- . Z,-TQ — a(Z,-T6‘)}, i=1,...,n, with 8 unknown
— S5(X,Z) =", XiZi is suff. stat. for X = (Xq,...,X,)
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Intro: testing goodness-of-fit (GoF)

More generally...

Goodness-of-fit test
Testing Hyp: X ~ Py for some 6 € O,
where {Py : 0 € ©} is a parametric family
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Intro: testing goodness-of-fit (GoF)

More generally...

Goodness-of-fit test
Testing Hyp: X ~ Py for some 6 € O,
where {Py : 0 € ©} is a parametric family

Conditional independence testing can be a special case:

Assume X | Z ~ Py(+|Z) for some 6 € ©
Null hypothesis Hy : X L Y | Z
Equivalently... Ho: X | Y, Z ~ Py(:|Z) for some 6 € ©

Note: we condition on Y and Z (i.e., treat as fixed)
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Intro: testing goodness-of-fit (GoF)

A general framework:

Choose any test statistic 7T : X — R

e Draw copies X1, ... X(M)

Compute rank-based p-value

1+ 3, H{T(X™) > T(X)}

|:
pva 1+ M

o If X, XW .. XM are exchangeable under Hy ~» p-value is valid
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Co-sufficient sampling (CSS)

Co-sufficient sampling

Sample copies X(™) ~ (distrib. of X | S(X)),
where S(X) is a sufficient statistic for the family {Py : 6 € ©}

Can be applied to:
1. Test goodness-of-fit (GoF)
(Engen & Lillegard 1997, Lockhart et al 2007, Stephens 2012, Hazra 2013 ....)

2. Test conditional independence (special case of GoF)
(Rosenbaum 1984, Kolassa 2003, Huang & Janson 2019)

3. Construct conf. intervals for a parameter of interest
(by inverting GoF tests)
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Co-sufficient sampling (CSS)

Co-sufficient sampling
Sample copies X(™) ~ (distrib. of X | S(X)),
where S(X) is a sufficient statistic for the family {Py : 6 € ©}

Permutation tests are an example of CSS
o Hy: Xi,...,X, X DforDe (some set)
e The order statistics X(l) <... < X(,,) are sufficient under the null
e Permutation test < resampling X conditional on order statistics
e Application: testing X 1L Y
Hp: conditional on Yi,...,Y,, it holds that Xi,..., X, are i.i.d.
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Co-sufficient sampling (CSS)

Limitation of co-sufficient sampling... no power in many settings!

Example—Ilogistic model:
o X =(X,...,X,) €{0,1}", Z=(2y,...,2Z,) € (RF)"

e |f the Z;'s are in general position,
then >, X;Z; € R¥ uniquely determines X

(so if we resample, will have X(1) = ... = X(M) = X ~> zero power)
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Co-sufficient sampling (CSS)

Limitation of co-sufficient sampling... no power in many settings!

For many other models, the minimal sufficient statistic S(X)
is essentially the data itself, e.g.,

Mixture of Gaussians or mixture of GLMs

Non-canonical GLMs

Heavy tailed distributions (e.g., multivariate t)

Models with missing or corrupted data
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Approximate sufficiency

For a family {Py : 0 € ©}, a function S(X) is a sufficient statistic if
(distrib. of X | S(X), X ~ Py) = (distrib. of X | S(X), X ~ Py/) V0,0'".

Asymptotic sufficiency: (Le Cam, Wald, ...)

Informally...

(distrib. of X | S(X), X ~ Py) ~ (distrib. of X | S(X), X ~ Py) V0,0

e Under regularity conditions, S(X) = §MLE(X) is asymp. suff.
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Approximate co-sufficient sampling (aCSS)

Main idea:

e Let § € © be an approximate MLE given the data X

o Let py(- \0) = distrib. of X | 9, if marglnally X ~ Py
~+ under the null, X | 6 ~ Po, (- |9) for the unknown true 6o

e Sample copies X, ..., XM from p§(~|§) ~ pgo(-|§)
—— ———

by approx. sufficiency

X,)N((l), ... ,)N((M) =~ exchangeable under Hy ~~ p-value is ~ valid
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Approximate co-sufficient sampling (aCSS)

Distance to exchangeability

dexcn (X, XD XMy = nf {dTV<(X,)~<(1),...,)?“‘”’),D)}
o o

For any test statistic T(X), the p-value

1+ 3, H{TX™) > T(X)}
1+ M

pval =

satisfies

P {pval < a} < @+ deen(X, XD, ..., XM),
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aCSS algorithm

Step 1:
Step 2:
Step 3:

Step 4:

choose a test statistic T : X - R
observe data X, and compute an approximate MLE )
sample copies )N((l), . ,)?(M) from & distribution of X | 0

compute a rank-based p-value to test Hpy:

1+ 3, H{T(X™) > T(X)}
1+M

pval =
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aCSS algorithm

e Step 2: observe data X, and compute an approximate MLE )

Ideally would like to minimize

L(6; X, W) = L(6; X) + o-WT9
——— N——
penalized neg. log-likelihood perturb with W ~ N(0, ;14)
— log f(X;0)+R(0) (choose o < n'/?)

(see also Tian & Taylor 2018—random perturbation for selective inference)
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aCSS algorithm

e Step 2: observe data X, and compute an approximate MLE )

Ideally would like to minimize

L(6; X, W) = L(6; X) + o-WT9
—_—— S——
penalized neg. log-likelihood perturb with W ~ N(0, 514)
— log f(X;0)+R(0) (choose o <« nl/z)

(see also Tian & Taylor 2018—random perturbation for selective inference)

But... what if nonconvex? what if no global minimum?

— Function : X x R? — @, returns 6(X, W).

— If O(X, W) is a strict SOSP of L(6; X, W), proceed to next step.
— Otherwise return X = ... = X(M) = X s pval = 1.
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aCSS algorithm

e Step 3: sample copies XD, ..., X(M) from ~ distribution of X | 0
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aCSS algorithm

e Step 3: sample copies XD, XM from ~ distribution of X | )

Density of X | 8, conditional on the event that (X, W) is strict SOSP:

Vo L(0; x ~
o f(x; 0p) - exp {—W} - det (Vgﬁ(@; x)) lxex,

support of X\§

16/27



aCSS algorithm

e Step 3: sample copies XV, .. XM from ~ distribution of X | )

Density of X | 8, conditional on the event that (X, W) is strict SOSP:
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aCSS algorithm

e Step 3: sample copies XV, .. XM from ~ distribution of X | )

Density of X | 8, conditional on the event that (X, W) is strict SOSP:

Vo L(0; x ~
o f(x; 0p) - exp {—W} - det (Vgﬁ(ﬁ; x)) lxex,

support of X\§

0o unknown ~- use 6 as plug-in estimate:

x f(x; 5) - exp {_W} - det (Vgﬁ(é; X)) “Lyex,

If sampling directly is impossible,
can use an exchangeable form of MCMC (Besag & Clifford 1989)
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Type | error guarantee

Assumption 1: regularity conditions

e O C RY convex & open
e Py has positive density f(-; #) w.r.t. base measure vy for all 6 € ©

e Log-likelihood log f(x; 6) & penalty R(6) are continuously twice diff.

17/27



Type | error guarantee

Assumption 2: approximate MLE
For X ~ Py, and W ~ N(0, %Id), with prob. at least 1 — ¢,

o~ o~

[10(X, W) — 6| <r and O(X, W) is a strict SOSP of L(6; X, W).

Assumption 3: Hessian of the log-likelihood

E

exp{ sup  r’[|[V?log f(X;0) — E [V log f(X;0)] ||H <€
0€B(00,r)NO
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Type | error guarantee

Assumption 2: approximate MLE
For X ~ Py, and W ~ N(0, %Id), with prob. at least 1 — ¢,

o~ o~

[10(X, W) — 6| <r and O(X, W) is a strict SOSP of L(6; X, W).

Assumption 3: Hessian of the log-likelihood

E

exp{ sup  r’[|[V?log f(X;0) — E [V log f(X;0)] ||H <€
0€B(00,r)NO

In standard settings with n independent observations...

re, 6 =O(n"%?)
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Type | error guarantee

Theorem
Under Assumptions 1, 2, & 3, the copies produced by aCSS satisfy

dexch (X, XV, ..., XM <357 + 5+ ¢

under Hy.
Therefore, for any test statistic T, Type | error for testing Hp satisfies

P{pval <a} <a+30r+d+e
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Type | error guarantee

Theorem
Under Assumptions 1, 2, & 3, the copies produced by aCSS satisfy

dexch(Xa)?(l)a“-a)?(M)) <30r+d+¢

under Hy.
Therefore, for any test statistic T, Type | error for testing Hp satisfies

P{pval <a} <a+30r+0+¢

/(

Excess Type | error should be o(1)...
e r,8,c = n"1/2 from the assumptions

e o = noise level, chosen by analyst
— choose o < n° for some c € [0, 3)
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Examples

Examples where CSS has no power, but aCSS assumptions hold:

e Canonical GLMs such as logistic regression (low-dim.):

Z'B

e<i

Xi A Bernoull —_—
1+e% B

) for unknown
e Two-sample difference-of-means (the Behrens—Fisher problem):

iid iid
Xi N N(ux,0%),  Yi~N(uy,0%), test Ho:px = py

(An aCSS-like approach for this problem was considered by Lillegérd 2001)
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Examples

Examples where CSS has no power, but aCSS assumptions hold:

e Spatial process on integer lattice: for unknown p,

X ~ N(0,X) where L = pP7 for known pairwise distances Dj;
e Multivariate t distribution (low-dim.):
iid

Xi ~ t,(0,%) for known 7 & unknown ¥

e And maybe missing data, latent variables, and more ...
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Simulations

Compare to oracle method that knows 6p:
e Sample copies X (™ = Py,

e Compute p-value with same statistic T(x)
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Simulations

Compare to oracle method that knows 6p:

e Sample copies X (™) % Py,

Compute p-value with same statistic T(x)

Logistic Regression Behrens—Fisher
o S
- — aCss - — aCss
© _| ---- oracle © _| ---- oracle
o o
e 9 ] - @
[ o [ o
= =
£ = | g <
o o
N ] N ]
o o
o | o |
® 5 T T T T T © 5 T T T T T
00 02 04 06 08 10 00 02 04 06 08 10

Coefficient on X MOMTO)
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Simulations

Power

Compare to oracle method that knows 6p:

00 02 04 06 08 1.0

Gaussian Spatial

e Sample copies X (™ = Py,

| — acss

oracle

Anisotropy Parameter

00 05 10 15 20 25 3.0

Power

e Compute p-value with same statistic T(x)

00 02 04 06 08 1.0

Multivariate t

| — acss

oracle .-

True d.f. = Null d.f.
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Sampling

Recall: need to sample copies X(m) from

. L(0: .
x f(x;0) - exp {—W} - det (Vgﬁ(&; x)) Liex,
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Sampling

Recall: need to sample copies X(m) from

. L(0: .
x f(x;0) - exp {—W} - det (Vgﬁ(&; x)) Liex,

Two exchangeable MCMC strategies (Besag & Clifford 1989)

latent hub
X@
X / X3
/
\ /
X pXed X(#) — X(2) — X — X (1) — -+ — (M) — X(3)

. / N Random permutation of M + 1 positions

X (M) X(M=2)

K(M-1)

-~

e Run Metropolis—Hastings, where f(x; 6) stationary for proposal distrib.
e e.g., if X consists of n indep. observations (i.e., f(x; 5) = [ f,-(x;;é\)),

can choose proposal distrib. = resample s of n observations 23/e7



Proof sketch for Theorem

Need to bound degen (X, XM, ... X(M)

(1) Calculate joint distribution:

7 ~ (marginal distrib. of A)

~

X0 ~ po,(-10)
X(m) | X,0 ~ p§(~|9)

= dexch(Xax(l)a"'ax(M)) < ]E§ [dTV(p90(|é\)7p§(‘§)):|
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Proof sketch for Theorem

(2) To bound dtv:

~

Py (X10)
Pay (X0)

F(X;0)
f(X, 90)

Py (X10)

poo(XI0)  E, (5 [AX0)]
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Proof sketch for Theorem

(2) To bound drv:

~

~ ~ £(X:0)
pp(XI0) F(X:6) _ pp(X|0) _ F(X:0)

9) (X0 o) _[f(x:0)
Pao(X10) (X:60) P (X 1) ]Epeo(~\ ) [f(X;@o)}

- R [f(x;@)
16) | F(Xi60)

F(X:0)
) 0 f(X;6
= dTV(POO("a)’pﬁ('W)) - EPGO(-WA) (1 B E(O))
Pog (- ] N

So, we need to show that :(())((fgo)) is &~ constant over distrib. X|§
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Proof sketch for Theorem

log (:8:;33)) = —(90—(/9\)TV9 log F(X; 5)_%(90—§)TV3 log F(X; é)(&o—é\)
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Proof sketch for Theorem

log (:8:;33)) = —(90—(/9\)TV9 log F(X; 5)_%(90_§)Tv3 log F(X; é)(@o—é\)

==

f(X, 90)

log < F(X;0) > i %(90 —0)"Eq, [Vf, log f(X; 5)] (0 — 0)

<r-||Vglog f(X;0)| + % e va log £(X; ) — Eq, [vg log (X é)} H

S =olWi=e == by Asm. 3
60 — 01l < r
with prob. > 1 — § by Asm. 2
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Proof sketch for Theorem

log (:8:;33)) = —(90—§)TV9 log F(X; 5)_%(90_§)Tv5 log F(X; é)(&o—é\)

==

f(X, 90)

log < F(X;0) > i %(90 —0)"Eq, [Vf, log f(X; 5)] (0 — 0)

<r-||Vglog f(X;0)| + % e va log £(X; ) — Eq, [vg log (X é)} H

S =olWi=e == by Asm. 3
60 — 01l < r
with prob. > 1 — § by Asm. 2

Rearrange ~~

dexch(X,X(l)v 000 ,X(M)) < E@\ [dTV(P90(|§)7P§(|§))} < 3or+6+¢
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Summary & open questions

e Summary: aCSS can test goodness-of-fit by
sampling nearly-exchangeable copies of the data,
in a much broader range of settings than CSS
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Summary & open questions

e Summary: aCSS can test goodness-of-fit by
sampling nearly-exchangeable copies of the data,
in a much broader range of settings than CSS

How to choose o to balance Type | error & power?

e Connections to Bayesian methods?

Apply to high dimensional regression / covariance estimation?

Apply to missing data / latent variables / models with singularities?

e Extend to model-X knockoffs?

Thank you!
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