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Code & demos available at http://web.stanford.edu/~candes/Knockoffs/
Paper available at http://arxiv.org/abs/1404.5609
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Setting

An example:
Which mutations in the reverse transcriptase (RT) of HIV-1
determine susceptibility to reverse transcriptase inhibitors (RTIs)?

> y; € R =resistance of virus in sample i to a RTI-type drug

» X;; € {0, 1} indicates if mutation j is present in virus sample i

How can we select mutations that determine drug resistance,
in such a way that our answer will replicate in further trials?
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Setting

Sparse linear model:

y=X-B+z WherCZiLi(JiN(O,O'Z)

» n observations, p features

> [ is sparse
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Setting

Goal: select a set of features X;
that are likely to be relevant to the response y,
without too many false positives.

One way to measure performance:

FDR — # false positives _E 1S N Ho| .
total # of features selected N

Vv
False discovery rate False discovery proportion

S = set of selected features
Ho = “null hypotheses” = {j: 87 = 0}
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Sparse regression

. 1
Lasso: (3 = argmin {2 ly —X - ﬂ”% +A H/BHI}
BERP

Asymptotically, Lasso will select the correct model (at a good A).

In practice for a finite sample,
» True positives & false positives intermixed along the Lasso path
» How to pick A to balance FDR vs power?

» Need to account for correlations between X; & weak signals that
may have been missed on the Lasso path.
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Sparse regression
Simulated data with n = 1500, p = 500.

Lasso fitted model for A = 1.75:
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Sparse regression
Simulated data with n = 1500, p = 500.

Lasso fitted model for A = 1.75:
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Sparse regression
Simulated data with n = 1500, p = 500.

Lasso fitted model for A = 1.75:

FDP = 2 — 47%

Fitted coefficient B;
-1 0
|
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Sparse regression
Simulated data with n = 1500, p = 500.

Lasso fitted model for A = 1.75:

FDP = 2 — 47%

Fitted coefficient B;
0
|

-2 -1

T T T T T T
0 100 200 300 400 500

Index j

To estimate FDP, would need to calculate distribution of 5}‘ for null j
(would need to know o2, 8*,...).  (Donoho et al 2009)
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Construct knockoffs

Main idea:

For each feature X;, construct a knockoff version )~(J
The knockoffs serve as a “control group” = can estimate FDP.

Setting:
» Require n > p (ongoing work for high-dim. setting)
» Don’t need to know o

» Don’t need any information about 5*

» Will get an exact, finite-sample guarantee for FDR
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Construct knockoffs

Construction:

» The knockoffs replicate the correlation structure of X:
)N(jT)N(k = XjTXk for all j, k
> Also preserve correlations between knockoffs & originals:

X' Xi = X;' X, for all j # k

Augmented design matrix

X X :(Xl X>... X )?1 iz...)?)ERnXZP
p p
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Construct knockoffs

How?
Define X = X - (I, - 26274+ U-C, where:

Y=X"X>¢I,
U = n x p orthonormal matrix orthogonal to X
CTC =4(&L, — €2271)  (Cholesky decomposition)

e O Y |
— [XX]T[XX]:(E_%IP 251’)
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Construct knockoffs

Why?

For a null feature X;,

T _ vivex . vIi. D $Tvoex | 7. _ 3T
Xy = X' X8 + X2 = X[xB" + Xz = X[y

original features knockoff features

Jan 21 2015 Controlling false discovery rate via knockoffs 12/36



Construct knockoffs

Why?

For a null feature X,

D ~ ~ ~
X]Ty = XJ.TXﬁ*JerTZ = XjTXﬂ*JrX]Tz - X]Ty

original features knockoff features
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Construct knockoffs

Lemma 1: Pairwise exchangeability property.
For any N C H,,

T

(¢ ¥ ) 2 5]

= the knockoffs are a “control group” for the nulls

original features knockoff features
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Knockoff method

Steps:
1. Construct knockoffs

2. Compute Lasso with augmented matrix:

p = argmin {3 [~ [ %) -]+ A0, )

BER

3. Use )N(j as a “control group” for X;
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Knockoff method

Fitted model for A = 1.75 on the simulated dataset:

Fitted coefficient ;

500 original features 500 knockoff features

> Lasso selects 49 original features & 24 knockoff features
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Knockoff method

Fitted model for A = 1.75 on the simulated dataset:

Fitted coefficient {3;

500 original features 500 knockoff features

Lasso selects 49 original features & 24 knockoff features

Pairwise exchangeability of the nulls
= probably ~ 24 false positives among the 49 original features
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Knockoff method

Compute Lasso on the entire path A € [0, c0).

Aj = sup {)\ : ﬁjA # 0} = first time X; enters Lasso path

Xj = sup {)\ : Bf\ %+ 0} = first time )N(J enters Lasso path

Then define statistics

W) = max{Xy, \j} - sign(l; — &)
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Knockoff method

e null
M signal

F o+ + +

—_— —_—
A=0 A — 00
variables enter late variables enter early
(probably not significant) (likely significant)
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Knockoff method

4 . o - Null
"7 " = Signal

A when X; enters

A when X; enters

18/36
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Knockoff method

Lemma 2: Pairwise exchangeability of the nulls —

D
(Wi, Wa, ., Wo) 2 (W] - €1, Wa| - €2, o, W] - €)

where €; = sign(W;) for non-nulls and ¢; = {z1} for nulls.

e null
M signal
¥+ + + + + + o+
—— — e W S— —» |W|
L 4 o 0,00 o o o
A A A A A A A A A
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Knockoff method

Selected variables: Sy = {j : W; > +\}

_ S
FDP =
Control group: Sy = {j: W; < —A} (53)
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Knockoff method

Selected variables: Sy = {j : W; > +\}

_ S
FDP =
Control group: Sy = {j: W; < —A} (53)

44 a < Null
- - = Signal

O selected variables S,
O control group Sy

A when X, enters

A when X; enters

B ‘S)\Q/H()‘ N ’EAQHO‘ —
FDP(S)) = ’SA‘ ~ |S,\‘ < FDP(S))
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Knockoff method

The knockoff filter: define

51| _#W S -A)
‘SA| #{jiVVjZ-i-)\} ’

FDP(Sy) ==
then choose
A = min {)\ : F/D\F’(S>\) < q} (or A = oo if empty set)
and select the variable set

SA:{]':VVJ'ZA}.
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Knockoff method

A when X; enters

+ Null
= Signal

A when X; enters

1.0
B Actual FDP
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Theoretical guarantees

Theorem 1: For Sy chosen by the knockoff filter,
E [mFDP(S))] < ¢
where the modified FDP is given by

_ [sn

mFDP(S) = CEral
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Theoretical guarantees

The knockoff+ filter: define

e S+ W< Ay 1
e i TN s e 7w y

then choose
A4 = min {)\ : F/Eﬁﬂ_(S,\) < q} (or A = oo if empty set)
and select the variable set

Sa, = W= Ay}
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Theoretical guarantees

Theorem 2: For Sj, chosen by the knockoff+ filter,

E [FDP(Sx,)] < q.
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Theoretical guarantees

Theorem 2: For Sj, chosen by the knockoff+ filter,

E [FDP(Sx,)] < q.

Proof sketch:

FDP(Sy.) = ‘SA+ﬂ'Ho} _ ‘§A+ﬂ'Ho|+1' ’SAJrﬂ'Ho‘
- ‘SA+| ‘SA+‘ P JSA+OHO‘+1

SF/D\P+(SA+)S¢I martingale
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Theoretical guarantees

Proof sketch cont’d:
SxNHo . . ) .
M(\) = J—‘ is a supermartingale w.r.t. increasing ),
’S y N 7‘[0‘ +1
and A is a stopping time.
+ + + + + + + +
- = = —» |W|
0,0 [ 4 o, 00 o o o
A A A A A A A A A
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and A is a stopping time.
+ + + + +
> (W]
o, 6 0 4 o, 00 4 4 o
A A A A A A A A A

EM()] <EMO)] = || <1,

for C = # of + coin flips ~ Bin(|Hy],0.5)
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Simulations

Setup:
» n = 3000, p = 1000, sparsity level k£
» Features X; are random unit vectors with correlation level p
» For signals j, 37 Y {zA} for amplitude level A
> y=XB+N(0,1,)

Compare knockoff, knockoff+, & Benjamini-Hochberg (BH).
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Simulations

» Fix amplitude A = 3.5 & sparsity level k£ = 30
» Vary feature correlation p from 0 to 0.9 (set E[X;X;J = pli—Kly

30 100 H
- Nominal level —=— Knockoff
—=— Knockoff —— Knockoff+
25 -{ |—— Knockoff+ —— BHg
80 —
< 60—
g g
o« g
2
e g
40 o
20 -
5 4
0+ 0+
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 08
Feature correlation p Feature correlation p
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HIV data

Which mutations in the RT or protease of HIV-1
determine susceptibility to RT inhibitors or protease inhibitors?

Data:
Genotypic predictors of HIV type I drug resistance, Rhee et al (2006)
Available at hivdb.stanford.edu (Stanford HIV Drug Resistance Database)

» Each drug analysed separately
» Response y = resistance to the drug

» Features X = which mutations are present in the RT or in the
protease
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hivdb.stanford.edu

HIV data

The data set:
# protease or # mutations
Drug type | #drugs | Sample size | RT positions | appearing > 3 times
genotyped in sample

PI 6 848 99 209

NRTI 6 639 240 294
NNRTI 3 747 240 319
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HIV data

The data set:

# protease or # mutations
Drug type | #drugs | Sample size | RT positions | appearing > 3 times
genotyped in sample
PI 6 848 99 209
NRTI 6 639 240 294
NNRTI 3 747 240 319

To validate results:

> Treatment-selected mutation (TSM) panel:
A separate study identifies mutations frequently present in
patients who have been treated with each type of drug

Jan 21 2015 Controlling false discovery rate via knockoffs 30/36



HIV data

Results for
PI type drugs

# HIV-1 protease positions selected

o

Resistance to APV

Resistance to ATV

Appeav in TSM list
B Notin TSM hs

Knockoff

Data set size: n=768, p=201

Resistance to LPV

35

Knockoff

Data set size: n=329, p=147

Resistance to NFV

Resistance to IDV

1 BN

Knockoff

Data set size: n=826, p=208

Resistance to SQV

Knockoff

Data set size:

=516, p=184

o

Knockoff

Data set size: n=843, p=209

Knockoff

Data set size:

=825, p=208
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HIV data

Results for
NRTI type drugs

Results for
NNRTI type drugs

# HIV-1 RT positions selected

#HIV=1RT positions selected

Resistance to X3TC

Resistance to ABC

| m Appearin TSM list
B Notin TSM list

Knockoff BHq

Data set size: n=633, p=202

Resistance to D4T

Knockoff BHq

Data set size: n=628, p=294

Resistance to DDI

Resistance to AZT

Knockoff BHq

Data set size: n=630, p=202

Resistance to TDF

Knockoff BHq
Data set size: n=630, p=293

Resistance to DLV

| m appearin Tsmist
B Notin TSM lst

Knockoff BHq

Data set size: n=732, p=311

Knockoff BHq

Data set size: n=632, p=202

Resistance to EFV

Resistance to NVP

Knockoff BHg

Data set size: n=734, p=318

Knockoff BHg

Data set size: n=746, p=319
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Can knockoffs be replaced by permutations?

Let X™ = X with rows randomly permuted. Then

xx) = (50
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Can knockoffs be replaced by permutations?

Let X™ = X with rows randomly permuted. Then

xx) = (50

25 -
20 | "
N ol
2 i ettt e« At NSt s
—— ~
signals nulls permuted features
‘ FDR (target level ¢ = 20%)
Knockoff method 12.29%
Permutation method 45.61%
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Summary

The knockoff filter for inference in a sparse linear model:

e Creates a “control group” for any type of statistic

Handles any type of feature correlation

Unknown noise level & sparsity level

Finite-sample FDR guarantees
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Summary

Future work:
1. How to move to high-dimensional setting?
2. Extend to GLMs or other regression models?

3. Similar principles for other problems, e.g. graphical models?
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Summary

Thank you!

Code & demos available at
http://web.stanford.edu/~candes/Knockoffs/

Paper available at http://arxiv.org/abs/1404.5609

Joint work with Emmanuel Candes @ Stanford

R. F. B. was partially supported by NSF award DMS-1203762. E. C. is partially
supported by AFOSR under grant FA9550-09-1-0643, by NSF via grant CCF-0963835
and by the Math + X Award from the Simons Foundation.

Jan 21 2015

Controlling false discovery rate via knockoffs 36/36


http://web.stanford.edu/~candes/Knockoffs/
http://arxiv.org/abs/1404.5609

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	0.76: 
	0.77: 
	0.78: 
	0.79: 
	0.80: 
	0.81: 
	0.82: 
	0.83: 
	0.84: 
	0.85: 
	0.86: 
	0.87: 
	0.88: 
	0.89: 
	0.90: 
	0.91: 
	0.92: 
	0.93: 
	0.94: 
	0.95: 
	0.96: 
	0.97: 
	0.98: 
	0.99: 
	0.100: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


