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Computed tomography (CT) imaging
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Computed tomography (CT) imaging

• Measure: y` = number of photons detected along ray `

• Want to estimate the materials at each point inside the object:

xm(~r ) = density of material m at location ~r

• Distribution of y is ≈ determined by projections of x:

(Px)m` = amount of material m along ray `
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Computed tomography (CT) imaging

If the X-ray beam is monochromatic,

for each ray ` the number of photons detected is

y` ≈ Poisson

(
Itotal · exp

{
−
∑
m

µm · (Px)m`︸ ︷︷ ︸
})

amount of material m
along ray `

µm = attenuation coefficient for material m

Itotal = total intensity of X-ray spectrum / detector sensitivity

5/46



Computed tomography (CT) imaging

X-ray beam used in CT is polychromatic:
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Computed tomography (CT) imaging

For polychromatic X-ray beam:

y` ≈ Poisson

(
Itotal

∫
E
S(E)·exp

{
−
∑
m

µm(E)︸ ︷︷ ︸· (Px)m`

}
dE

)
attenuation coefficient for
material m at energy E

S(E) = distribution of X-ray spectrum intensity /

detector sensitivity across energies E
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Computed tomography (CT) imaging

Existing algorithms for CT treat the measurements

as a log linear function of the image:

log (E [y]) ≈ Linear function of Px

• Filtered back projection (FBP) — used in clinical CT
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Computed tomography (CT) imaging

log

(
E
[
y`
Itotal

])
= log

(∫
E
S(E) · exp

{
−
∑
m

µm(E) · (Px)m`

}
dE

)

If we swap log(·) with averaging:

≈ −
∑
m

[∫
E
S(E) · µm(E) dE

]
· (Px)m`
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Computed tomography (CT) imaging

Ignoring the X-ray spectrum leads to beam hardening:

true object full Poisson model log-linear

Poisson model
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Computed tomography (CT) imaging

Beam hardening in practice:

Goldman, J. Nucl. Med. Technol., 2007
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CT optimization problem

After discretization into pixels, want to minimize

∑
rays `

L
(
y`;

∑
energy i

s`i · exp
{
− (µ>Px)`i

})
︸ ︷︷ ︸

Poisson negative log-likelihood

+

(
Total variation

constraints, etc

)

Vector x = discretized materials map
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CT optimization problem

Spectral CT: photon detection is split

into multiple energy “windows” (bands):

∑
windows w

rays `

L
(
yw`;

∑
energy i

sw`i · exp
{
− (µ>Px)`i

})
︸ ︷︷ ︸

Poisson negative log-likelihood

+

(
Total variation

constraints, etc

)

Vector x = discretized materials map
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Optimization problem

General problem:

Want to minimize

F(Kx) + G(x)

where F and G might be nonconvex and/or nondifferentiable
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Optimization problem: differentiable case

If F is differentiable & G has an easy proximal map:

• Proximal gradient descent:x̃t+1 = xt − 1
ηK
>∇F(Kxt),

xt+1 = arg min
{

1
2 ‖x− x̃t+1‖22 + 1

ηG(x)
}

• Accelerated version: add an extrapolation step,

xt+1 ← xt+1 + θ(xt+1 − xt)

Convex: Beck & Teboulle 2009

Nonconvex: Loh & Wainwright 2013; Ochs et al 2014
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Optimization problem: convex case

If F,G are convex:

ADMM (alternating direction method of multipliers)

• Rewrite optimization:

min
x,w

max
u

{
F(w) + G(x) + 〈u,Kx− w〉+

σ

2
‖Kx− w‖22

}

• Alternate between minimizing over x and w, and updating u

Boyd et al, FnTML, 2011
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Optimization problem: convex case

CP (Chambolle-Pock algorithm)

Fenchel conjugate of F

Saddle point problem min
x

max
y

{
〈Kx, y〉 −

︷ ︸︸ ︷
F∗(y)︸ ︷︷ ︸+ G(x)

}
F(Kx) = max over y

Iterate:

xt+1 = arg min
{
〈Kx, yt〉+ G(x) + 1

2τ ‖x− xt‖
2
2

}
yt+1 = arg max

{
〈Kx̄t+1, y〉 − F∗(y)− 1

2σ ‖y − yt‖
2
2

}
↘

extrapolation xt+1 + θ(xt+1 − xt)

• Equivalent to ADMM with an added preconditioning step

Chambolle & Pock, J. Math. Imaging Vision, 2011 17/46



Optimization problem: convex case

Can we run CP or ADMM if F & G are nonconvex?

• Example: x 7→ F(Kx) + G(x) is convex,

but F is strongly concave in some directions

• ADMM / CP may diverge immediately

• CP may converge to the wrong solution because F∗∗ 6= F
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MOCCA algorithm

Main idea:

1. Take local convex approximations to F and G

2. Take one step (or a few steps) of the CP algorithm

3. Repeat until convergence

MOCCA ≈ majorization/minimization + primal/dual updates

Main question:
How should we construct the local convex approximations?
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MOCCA algorithm

• Split F & G into convex + differentiable components:

F = Fcvx + Fdiff, G = Gcvx + Gdiff

• Convex approximations at step t:

Ft(w) = Fcvx(w) +
[
Fdiff(ztF) + 〈w − ztF,∇Fdiff(ztF)〉

]
Gt(x) = Gcvx(x) +

[
Gdiff(ztG) + 〈x− ztG,∇Gdiff(ztG)〉

]
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MOCCA algorithm

• How do we pick expansion points ztF and ztG?

F(Kx)︸ ︷︷ ︸
dual variable y

+ G(x)︸ ︷︷ ︸
primal variable x

• ztG = primal variable xt

• ztF = primal point that mirrors the dual variable yt

21/46



MOCCA algorithm

Iterate:

xt+1 = arg min
{
〈Kx, yt〉+ Gt(x) + 1

2τ ‖x− xt‖
2
2

}
yt+1 = arg max

{
〈Kx̄t+1, y〉 − F∗t (y)− 1

2σ ‖y − yt‖
2
2

}
zt+1

F = 1
σ (yt − yt+1) +Kx̄t+1, zt+1

G = xt+1

• Step sizes σ, τ should satisfy στ ‖K‖2 < 1.

(As in Chambolle & Pock 2011)

• Can use a preconditioning step to avoid computing ‖K‖
(Pock & Chambolle 2011)
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Case study: nonconvex total variation

The problem:

• True signal x? ∈ Rd has total-variation sparsity

(nearby pixels often have identical values)

• Problem: minimize loss L(x) subject to sparsity in ∇2dx↗
2-dim. gradient operator

• Common approach: penalize ‖∇2dx‖1
 bias due to shrinkage on large gradient values
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Case study: nonconvex total variation

Use a nonconvex TV penalty to reduce bias from shrinkage:

logTVβ(x) =
∑
i

β · log (1 + |(∇2dx)i|/β)

Equivalent to ‖x‖TV = ‖∇2dx‖1 when β =∞.

Parekh & Selesnick (2015)

Related to reweighted `1 sparsity, Candès et al (2008)
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Case study: nonconvex total variation

Optimization problem for least squares loss:

minimize
1

2
‖b−Ax‖22 + ν · logTVβ(x)

logTVβ(x) = ‖∇2dx‖1︸ ︷︷ ︸
convex

+
[
β log(1 + |∇2dx|/β)− ‖∇2dx‖1

]
︸ ︷︷ ︸

h(∇2dx)=differentiable

Define:

Fcvx(w) = ν · ‖w‖1 Gcvx(x) = 1
2 ‖b−Ax‖

2
2

Fdiff(w) = ν · h(w) Gdiff(x) ≡ 0
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Case study: nonconvex total variation

MOCCA for least squares + nonconvex TV

xt+1 =
(
I + τA>A

)−1 (
xt + τA>b− τ∇>2dyt

)
yt+1 = Truncateν

(
yt + σ∇2dx̄t+1 − λ∇h(ztF)

)
+ λ∇h(ztF)

zt+1
F = 1

σ (yt − yt+1) +Kx̄t+1
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Case study: nonconvex total variation

Problem size: x ∈ R25×25 with block structure; 200 measurements

Tuning parameter λ: σ = λ
2

, τ = 1
2λ
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Application to spectral CT

Simulated CT measurements from object with 2 materials:

Bone Brain

FORBILD head phantom (Lauritsch & Bruder 2001)
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Application to spectral CT

Minimize:∑
windows w

rays `

L
(
yw`;

∑
energy i

sw`i · exp
{
− (µ>Px)`i

})
︸ ︷︷ ︸

Poisson negative log-likelihood

+

(
Total variation

constraints, etc

)
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Application to spectral CT

Minimize:

L(µ>P · x)︸ ︷︷ ︸
Poisson negative log-likelihood

+ δ

 ‖xbone‖TV ≤ γbone

&
‖xbrain‖TV ≤ γbrain


︸ ︷︷ ︸

convex indicator function
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Application to spectral CT

MOCCA setup: minimize F(Kx) + G(x)

w =

 w1

w2

w3

 =

 µ>P

∇bone

∇brain

 · x = Kx



F(w) =

 local convex/concave

quadratic approx. to L(w1)

+ δ


‖w2‖1 ≤ γbone

&

‖w3‖1 ≤ γbrain



G(x) ≡ 0
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Application to spectral CT

Algorithm:

1. Take one step of the MOCCA algorithm

2. Update local convex/concave quadratic approximation to L(·)
3. Update step sizes

4. Repeat until convergence
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Application to spectral CT
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Application to spectral CT

Using the Poisson likelihood vs. a least squares loss:
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Application to spectral CT

How critical is the choice of TV constraints γbone & γbrain?
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Theoretical results

Question 1:

If MOCCA converges, has it converged to the right solution?
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Theoretical results

Theorem 1: critical points

If the MOCCA algorithm converges with

(xt, yt, zt)→ (x̂, ŷ, ẑ)

then x̂ is a critical point of the optimization problem,

0 ∈ K>∂Fcvx(Kx̂) +K>∇Fdiff(Kx̂) + ∂Gcvx(x̂) +∇Gdiff(x̂)
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Theoretical results

Question 2:

Is MOCCA guaranteed to converge (& at what rate)?
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Theoretical results

Stable MOCCA algorithm (with “inner loop”)

At stage t,

1. Run the “inner loop”: fixing expansion points (ztF, z
t
G),

update (x, y) variables Lt+1 times

2. Update (x, y) variables by averaging over stage t:

(xt+1, yt+1) =
1

Lt+1

Lt+1∑
`=1

(xt+1;`, yt+1;`)

3. Update expansion points by averaging over stage t:zt+1
F = 1

Lt+1

∑Lt+1

`=1
1
σ (yt+1;`−1 − yt+1;`) +Kx̄t+1;`

zt+1
G = 1

Lt+1

∑Lt+1

`=1 xt+1;`
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Theoretical results

Background—restricted strong convexity:

• Definition: a loss function L(x) satisfies RSC if

〈x− x′, ∂L(x)− ∂L(x′)〉 &
∥∥x− x′∥∥2

2
− log(d)

n

∥∥x− x′∥∥2
1

• Convex: accurate recovery of sparse/structured signals

in high-dimensional statistics
Negahban et al 2009

• Nonconvex: local minima guaranteed to be near global min

for (differentiable loss) + (sparsity penalty)
Loh & Wainwright 2013
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Theoretical results

Restricted convexity/smoothness assumptions for MOCCA:

• Fcvx is ΛF-convex and Fdiff is ΘF-smooth

• Gcvx is ΛG-convex and Gdiff is ΘG-smooth

• The overall optimization problem is nearly convex:

(Kx)>(ΛF −ΘF)(Kx)︸ ︷︷ ︸
Convexity of F

+ x>(ΛG −ΘG)x︸ ︷︷ ︸
Convexity of G

� Ccvx ‖x‖22−τ
2 ‖x‖2restrict .

↗
`1 norm / any

structured norm

• Optimization is over bounded region {x : ‖x‖restrict ≤ R}
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Theoretical results

Theorem 2: convergence guarantee

For the stable form of the MOCCA algorithm with Lt ∼ Ct,

‖xt − x?‖2 . C
−t/2 + τR,

for any critical point x? with ‖x?‖restrict ≤ R.

Number of iterations to calculate xt is L1 + · · ·+ Lt ∼ Ct

 ‖xt − x?‖2 ∼
1√

(computational cost)
+ τR
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Theoretical results

Main ingredient: contraction property

Consider two convex approximations:Fz(Kx) + Gz(x)

Fz′(Kx) + Gz′(x)
with minimizers

x?z
x?z′

}

Then∥∥∥∥∥
(

x?z − x?z′
Kx?z −Kx?z′

)∥∥∥∥∥ ≤ (1− ε)

∥∥∥∥∥
(
zG − z′G
zF − z′F

)∥∥∥∥∥+ C · τR

for some ε > 0 and C <∞.
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Theoretical results
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Theoretical results
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Theoretical results
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Theoretical results
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Theoretical results
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Theoretical results
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Theoretical results
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Theoretical results
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Future directions

Optimization & theory:

• Is the stable “inner loop” version of MOCCA necessary?

• Without RSC, guarantee convergence to stationary point?

• Adaptive step sizes for faster convergence?

CT imaging:

• Detector sensitivity is not known exactly &

may vary over detector cells  data-adaptive calibration?

• Apply MOCCA directly to Poisson likelihood,

without quadratic approximation?
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Thank you!

Website: http://www.stat.uchicago.edu/~rina/mocca.html
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