Stability of Black Box Algorithms

Rina Foygel Barber (joint w/ Byol Kim, Jake Soloff, Rebecca Willett)

http://rinafb.github.io/

http://rinafb.github.io/

Outline

e Background on algorithmic stability
e Part 1: hardness of testing stability’

e Part 2: stability for bagged algorithms?

Collaborators:

.

i

Byol Kim Jake Soloff Rebecca Willett
N————
Part 1 Part 2
1Kim & B., Black-box tests for algorithmic stability, arXiv:2111.15546 1/40

ZSo\ofF, B., & Willett, Bagging provides assumption-free stability, arxiv:2301.12600

Background: algorithmic stability

algorithm A
—

Data (X1, Y1),...,(Xp, Ya) € RI xR Fitted model f

~ . more assumptions
Can f estimate the true model for Y | X?

Is ?guaranteed to predict Y with low test error?

Is training error ~ test error?

e Can we estimate how well f predicts Y from X7 ey

2/40

Background: algorithmic stability

-~

Concentration / consistency: f & f’ if we resample entire data set

Stability: f~fif we resample small fraction of data set

3/40

Background: algorithmic stability

Definition
A is (¢, 0)-stable with respect to distribution P & sample size n if
IP’P{ ’?(Xn—&—l) = f\i(Xn+1)} > € } <4 for (X;,Y)) il
/ N

A trained on {(Xj, Y;);Jj € [n]} A trained on {(Xj, Y;) : j € [n]\i}

Notes:
e We assume A treats training data symmetrically
A((X1, Y1), - -5 (Xn, Ya)) = A((Xo1ys Yo)s - - - » Xon)s Yo(n))
e Framework & results allow for a randomized A

4/40

Motivation for algorithmic stability

Stability has implications for:

e Generalization [Bousquet & Elisseeff 2002; Elisseeff et al 2005]
e Learnability [Shalev-Shwartz et al 2010]

e Predictive inference
[Steinberger & Leeb 2018; B., Candés, Ramdas, Tibshirani 2021]

5/40

Motivation for algorithmic stability — generalization

After training a model £ = A((X;, Y))ie[n) -

~

e Want to estimate L(f), where L(f) = E[¢(f(X), Y)]

~

e Leave-one-out estimate Lioo(f) = L 327, £(FV(X)), Y))

n

6/40

Motivation for algorithmic stability — generalization

After training a model £ = A((X;, Y))ie[n) -

~

e Want to estimate L(f), where L(f) = E[¢(f(X), Y)]

~

e Leave-one-out estimate Lioo(f) = L 327, £(FV(X)), Y))

n

Stability leads to generalization: [Bousquet & Elisseeff 2002]

e If / is bounded and A satisfies

E [[6f(Xnsn), Yora) = 4PV (Xasa), Yaua) || < e

then
L(F) < Lioo(F) + Op (n7/2 4 12).

6/40

Motivation for algorithmic stability — predictive inference

Definition: distribution-free predictive set

A map from data (Xj, Y;)ic[q to a prediction band C, st

IED(x- v,)idp {Y"+1 € 6"(Xn+1)} >1l-«

for every distribution P.

7/40

Motivation for algorithmic stability — predictive inference

Definition: distribution-free predictive set

A map from data (Xj, Y;)ic[q to a prediction band C, st.

P xviyie {Y"H € 6n(Xn+1)} >1—-a

for every distribution P.

Methods:

e Conformal prediction — high computational cost [Vovk et al 2005]
e Split conformal (i.e., holdout set) — less precise b/c split data

e Jackknife a.k.a. leave-one-out cross-validation — is it distrib.-free?

7/40

Motivation for algorithmic stability — predictive inference

Jackknife: fix any regression algorithm A, then compute

f=A(X Yiew): £ = A, V)ierni)
Prediction interval for Y11 given X,11 = x:

Co(x) = F(x) £ Qi_a(R})

where R; = |Y; — ?\i(X;)\ = jth leave-one-out residual

8/40

Motivation for algorithmic stability — predictive inference

Jackknife: fix any regression algorithm A, then compute

F=A(X YWie), FY = A, V)jern)

Prediction interval for Y11 given X,11 = x:
Co(x) = F(x) = Qi_a(R})

where R; = |Y; — ?\i(X;)\ = ith leave-one-out residual

Is this method distribution-free?

e No assumption-free guarantees — f & fF\ may behave differently

e If Ais (e, 0)-stable, guarantees w/o any assumptions on P
[Steinberger & Leeb 2018; B., Candeés, Ramdas, Tibshirani 2021]

8/40

Motivation for algorithmic stability

At a high level...
We want methods that are valid with no untestable assumptions

e We can't test whether P satisfies distributional assumptions
(e.g., parametric model / smoothness / etc)

e Some robust methods (e.g., jackknife) instead assume A is stable

e But, is this another untestable assumption?

9/40

Aren’t most algorithms stable?

Some algorithms are known to satisfy stability:

e Nearest neighbors:

=7 3 v

i€k-NN(x)

Stable if we choose k < n

e Ridge regression:

F = 6(xi Br) where B, = arg min {1 U0V 6(%: B)) + wn%}

i=1

Stable if f and ¢ are Lipschitz

10/40

Aren’t most algorithms stable?

Exhibit A: least squares — known to be unstable if d ~ n

o (Xor)

d=100, n=500

d=100, n=105

10

[
0
|

-10

-20
|

A (%)

Bo(Xe)

11/40

Aren’t most algorithms stable?

Exhibit B: modern ML methods — too complex to prove stability

Weigh \
Optimizer é‘" (loss)
e.g. St

- function
9/ \ / ‘Ground Truth
T Labels
\J

Input Image Convolutional Neural Network (CNN)
Convolutonal
Layer

Fully Connected
Convolutional Layer
Layer

Convolutional
Layer

Benign or
Malignant

Output
Predictions

Maxpooling Maxpooling Flattening

Figure from A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for
Improving Clinical Workflow, Akkus et al 2019

12/40

Aren’t most algorithms stable?

Exhibit C: some methods have instability built in

e Lasso (glmnet R package):

glmnet(x,y,..., lambda.min.ratio = ifelse(nobs < nvars,0.01,1e-04) ,...)

e Highly adaptive Lasso (hal9001 R package):
SL.hal(Y,X,..., nfolds = ifelse(length(Y) <= 100,20,10) ,...)

e Multiple imputation (mice & midastouch R package):
In an old version of the code: outout <- ifelse(nobs>250,FALSE,TRUE)

13/40

Part 1: Testing stability in the black box setting

The black box setting: we learn how .4 works by running it on data, e.g.:

e Run A on samples bootstrapped from available real data
e Run A on semisynthetic data obtained by perturbing the real data
e Run A on simulated data obtained by fitting a model to real data

e Etc.

14/40

Part 1: Testing stability in the black box setting

The black box setting: we learn how .4 works by running it on data, e.g.:

e Run A on samples bootstrapped from available real data
e Run A on semisynthetic data obtained by perturbing the real data
e Run A on simulated data obtained by fitting a model to real data

e Etc.

But, we cannot “look inside the black box" of A or of a fitted f:

(D)) = [AD U (<, yNI(x))|
e Cannot check if f = A(D) is Lipschitz

e Cannot compute SUP(x

e Etc.

14/40

Part 1: Testing stability in the black box setting

available labeled & unlabeled data

We want to construct a test T = 7A',,76,5(A, Dy, D,) that:

{Returns 1 if we are confident that (A, P, n) is (e, d)-stable

Returns 0 otherwise

15/40

Part 1: Testing stability in the black box setting

available labeled & unlabeled data

We want to construct a test T = 7A',,76,5(A, Dy, D,) that:

{Returns 1 if we are confident that (A, P, n) is (e, d)-stable

Returns 0 otherwise

e We require T to be a valid distribution-free test of (¢, §)-stability:

]P’\{ Tres(A Dy, D,) = 1} < « for any (A, P, n) that is not (e, §)-stable

with respect to data Dy, D, drawn i.i.d. from P

e We want T to have high power for detecting stability:

P{T0cs(A, D, D) = 1 S a for (e, 6)-stable (A, P, n)

15/40

Black-box tests

Definition: black-box test

available labeled & unlabeled data

T = ?(A, Dy,D,) is a black-box test if it can be defined as follows:

16/40

Black-box tests

Definition: black-box test

available labeled & unlabeled data

T = ?(A, Dy,D,) is a black-box test if it can be defined as follows:

e At step r = 1, generate a new dataset (e.g. via subsampling/bootstrap/simulation)

@", DP) = FV Dy, D],

and train and evaluate the model,

7O — (DY), FO = FO (D).

16/40

Black-box tests

Definition: black-box test

available labeled & unlabeled data

T = ?(A, Dy,D,) is a black-box test if it can be defined as follows:

e At step r = 1, generate a new dataset (e.g. via subsampling/bootstrap/simulation)

@", DP) = FV Dy, D],

and train and evaluate the model,

7O — (DY), FO = FO (D).

e At step r = 2, generate a new dataset
@2, DP) = @D, Dy, DM, DY, ¥ V]
and train and evaluate the model,

7O A(DR), IO = FO (D).

16/40

Black-box tests

Definition: black-box test

available labeled & unlabeled data

T = ?(A, Dy,D,) is a black-box test if it can be defined as follows:

e At step r = 1, generate a new dataset (e.g. via subsampling/bootstrap/simulation)

@", DP) = FV Dy, D],

and train and evaluate the model,

7O — (DY), FO = FO (D).

e At step r = 2, generate a new dataset

@2, D@ = @Dy, D, DM, DM, YD,

and train and evaluate the model,

7O A(DR), IO = FO (D).

e Repeat for r =3,4,...

16/40

Black-box tests

Definition: black-box test

available labeled & unlabeled data

T = ?(A, Dy,D,) is a black-box test if it can be defined as follows:

e At step r = 1, generate a new dataset (e.g. via subsampling/bootstrap/simulation)

@", DP) = FV Dy, D],

and train and evaluate the model,

7O — (DY), FO = FO (D).

e At step r = 2, generate a new dataset

@2, D@ = @Dy, D, DM, DM, YD,

and train and evaluate the model,

7O A(DR), IO = FO (D).

e Repeat for r =3,4,...
e Finally, define T = g[D¢, Du, (DI),51, (DY)r51, (Y)r21]. 16/40

Binomial test

— min J 1Dl |De|+[Du|
Let/f—mln{ e

~~ can construct |x| many data sets (X{, Y{),..., (X£, Y)), Xk,

)

A simple binomial test

17/40

Binomial test

— in J 1Del [De|+|Du]
Let/f—mln{ e }
~~ can construct |x| many data sets (X{, Y{),..., (X£, Y)), Xk,

A simple binomial test

e For each dataset k=1,..., |k, fit models
fo = A(XE Yi)iem), B = A(XE, Y)iep-1)
& compare predictions:
Ak =] AlXg) = B(Xk) |
e Compare against Binom(|x|,d) at level a:
T = 1{ Yolase g}t\he a-quantile of Binom([m],é)}

with randomization to handle discreteness 17/40

Performance of the binomial test

Theorem: validity of the simple binomial test
If (A, P, n) is not (e,0)-stable, then

P{?:l}ga.

Theorem: power of the simple binomial test

If (A, P, n) is (¢, 0)-stable, & either 6* =0 or § <1 — /%],

P{?:l}:{a- (11__55>w}/\1

N

87 =min{é : (A, P, n)is (e, §)-stable}

18/40

Performance of the binomial test

e The binomial test has validity, but power is low

e Unsurprising b/c it doesn't make efficient use of the data—
can we improve power by extracting more info from the data?

19/40

A hardness result

— nin J [Del |De|+|Dul
Recallm—mln{ o

Theorem: upper bound on power

Let T be any black-box test of stability that is valid at level < o
If (A, P, n) is (e, d)-stable,

]P’{?A'—l}<{a~<11__(§>ﬁ}/\1.

20/40

A hardness result

Interpretation:

e Every valid black-box test has low power:
if Kk =0O(1) and § = o(1) then power ~ «

e Can't improve on the power of the simple binomial test

e No information can be gained from additional calls to A
or from resampling/bootstrapping/simulating/modeling/etc

21/40

Proof sketch

Suppose (A, P, n) is (e, d)-stable.
Proof idea: construct (A’, P’, n) that is not stable, such that:

e P~ P’ so that dT\/(data from P, data from P’) is small

e And, if data ~ P, then A and A’ return the same output

e So, Pia,p,n) {7A' = 1} ~ Par,pron) {? = 1} <«

22/40

Proof sketch

1Dyl

Distribution P’: draw (X, Y) ~ P, then return

(X,Y) with probability 1 — ¢
(X, ys) with probability c,

for a small constant ¢ > 0

23/40

Proof sketch

1Dyl

Distribution P’: draw (X, Y) ~ P, then return
(X,Y) with probability 1 — ¢
(X, ys) with probability c,
for a small constant ¢ > 0
Algorithm A’
Given data (x1,¥1), -, (Xm, Ym) & test point xp1,
e If m=nand y; =y, for any i/, return a corrupted prediction
e Otherwise, return [A((x1,y1),- .-, (Xm; Ym))](Xm+1)

23/40

Proof sketch

1Dyl

Distribution P’: draw (X, Y) ~ P, then return

(X,Y) with probability 1 — ¢
(X, ys) with probability c,
for a small constant ¢ > 0
Algorithm A’: N choose St't'((’2;’ Pt/’b'l’)
Given data (x1,¥1), -, (Xm, Ym) & test point xp1, '

e If m=nand y; =y, for any i/, return a corrupted prediction
e Otherwise, return [A((x1,y1),- .-, (Xm; Ym))](Xm+1)

23/40

Proof sketch

1 5* | Dyl 1 5 | Dy +\'Du\
P{T=1}<a(3—% d P{T=1}<a(=
= (1-6) o =*\1-%
Distribution P’: draw (X, Y) ~ P, then return
(X,Y) with probability 1 — ¢
(W) (x.,Y) with probability c,
for a small constant ¢ > 0
Algorithm A’ " arosest (411
Given data (x1,¥1), -, (Xm, Ym) & test point xp1, '
Xi = Xy

e If m=nand y//#/j/?[for any i, return a corrupted prediction
e Otherwise, return [A((x1,y1),- .-, (Xm; Ym))](Xm+1)

23/40

Part 1: summary & open questions

Our results:

e The simple binomial test uses the data very inefficiently,
but can still be the most powerful distribution-free test of stability

e More sophisticated strategies (simulating/bootstrapping/etc)
do not help to determine stability

24 /40

Part 1: summary & open questions

Our results:

e The simple binomial test uses the data very inefficiently,
but can still be the most powerful distribution-free test of stability

e More sophisticated strategies (simulating/bootstrapping/etc)
do not help to determine stability

Open questions:

e Are there mild assumptions on A, P that make stability testable?
e Are we using a definition of stability that's too strong?
e |s there a way to convert any algorithm into a stable algorithm,

with a pre- or post-processing step?

24 /40

Part 2: Stability of bagged algorithms

Question inspired by Part 1

e |s there a way to convert any algorithm into a stable algorithm?

Empirically, bagging (& other ensembling procedures) have been
observed to improve stability dramatically.

25/40

Part 2: Stability of bagged algorithms

Question inspired by Part 1

e |s there a way to convert any algorithm into a stable algorithm?

Empirically, bagging (& other ensembling procedures) have been
observed to improve stability dramatically.

Bagging
e Sample subsets S C [n] for b=1,...,B
e Fit models f, = A((X;, Y;) : i € Sp)

o A, returns aggregated model f:

w|

f) = =3 A0
b

25/40

Background on bagging

The most common options:
e Classical bagging = subsets S;, of size m, sampled w/ replacement
p=P{ieS}=1-(1-1/m™
e Subbagging = subsets S;, of size m < n, sampled w/o replacement

p=P{ie Sy} =m/n

26/40

Background on bagging

Bagging appears in:
e Random forests [Breiman 2001]

e Variable selection in regression [Meinshausen & Biihlmann 2010]

Classification in the presence of class imbalance [Li 2007]

Robust Bayesian inference (BayesBag) [Huggins & Miller 2023]

e & many more

27/40

Background on bagging

Many results on theoretical properties—
Bagging induces smoothness, reduces variance, creates robustness
[Biihimann&Yu 2002, Grandvalet 2004, Friedman&Hall 2000, Elisseeff et al 2005, . ..]

Some results show stability of bagging in limited regimes (m < n)
[Poggio et al 2002, Chen et al 2022]

28/40

Bagging helps stability

ency

Frequ

uency

Freq

Y

FI'C({IK‘,IIL’ s

200 I Base algorithm A
Subbagged algorithm Ap

100

8.00 0.05 0.10 0.15 0.20 0.25
200
100

8.00 0.05 0.10 0.15 0.20 0.25
400
200

. I |

8.00 0.05 0.10 0.15 0.20 0.25
Leave-one-out perturbation | f(z) — fV(z)]

< logistic regression

< neural networks

< regression trees

29/40

Re-defining stability

Definition from Part 1
A is (e, 0)-stable if

P { [F(x) = PV(x)| > ¢ } <6

when trained on D = (X1, Y1),..., (Xn, Ya) id P, and tested on x ~ Px

30/40

Re-defining stability

Definition from Part 1
A is (e, 0)-stable if

Pp{ |F(x) = FV(x)| > e } <5

ud

when trained on D = (X, Y1),...,(Xs, Ya) ~ P, and tested on x ~ Px

Updated definition (strictly stronger)
Ais (¢, 0)-stable if

fZIL{]f (x)] > e} <6

when trained on any D = (X, Y1),...,(Xn, Ya), and tested on any x

30/40

Main result: stability guarantee

f bbaggi
Recall p=P{i € Sy} = m/n or subbagging
1—(1—1/n)™ for classical bagging
Theorem

Let A be any base algorithm that returns predictions in [0, 1].
For any n,m, as B — 00, Apag satisfies (e, §)-stability for every

1 p
de? > —— .=
6_4(n—1) 1-p

31/40

Main result: stability guarantee

m/n for subbagging

Recall p=P{i € 5,} =
¢ J {1 —(1—=1/nm)™ for classical bagging

Theorem
Let A be any base algorithm that returns predictions in [0, 1].
For any n,m, as B — 00, Apag satisfies (e, §)-stability for every

1 p
de? > —— .=
6_4(n—1) 1-p

e Framework & results allow for a randomized A
e Results extend to finite B (use Hoeffding's inequality)

e Can also extend to models with unbounded output, via either
clipping predictions, or letting € adapt to the range of f

31/40

Main result: stability guarantee

Regimes for subbagging:

¢ Proportional sampling: m = O(n)
Stability is guaranteed for e > n~1

e Massive subsampling: m = O(n®) for 0 < 3 < 1
Stability is guaranteed for de2 > n~(2—F)

[See also existing stability guarantees by Chen, Syrgkanis, Austern 2022]

e Minimal subsampling: m =n—O(n®) for 0 < g < 1
Stability is guaranteed for §e? > n=#

32/40

Proof sketch

Suppose S C [n] contains dn “bad” data points:
|F(x) = FV(x)| = e

where f = Abpag(D) averages over all bags Sp,
while £\ = Ap,.(D_;) averages over all bags Sy, Z i.

33/40

Proof sketch

Suppose S C [n] contains dn “bad” data points:
|F(x) = FV(x)| = e

where f = Abpag(D) averages over all bags Sp,
while £\ = Ap,.(D_;) averages over all bags Sy, Z i.

Proof idea: a double counting argument for L =} . ¢ |f(x) = ?\’(x)|
e Summing over i, we see L > ¢-|S| = den

e We can also rewrite L by summing over bags b, because

i) =E [A(x) | i ¢S] = ﬁﬁ [0,

where expectation is taken over a randomly drawn bag S,.

33/40

Empirical results

Neural networks

Error probability §

2 4 6
Error tolerance y/ne

10

—— Neural network

Subbagged neural network

Stability guarantee
for subbagging

34/40

Empirical results

Regression trees

05 :
1 L
1 1
w0411 1
= \ H ___ Regression trees
Zoalli Ly (n = 500,d = 40)
El] : R R Stability guarantee
2 ! [- for subbagging
= 4 1 ___ Subbagged RT
5 | H (n = 500, d = 40)
1
0.1 “| o e e
v e
N tTTTeeeeeiiiiiaaa...
040() 2 4 6 8 10

Error tolerance \/ne

35/40

Empirical results

Logistic regression + ridge penalty with A = 0.001

0.5
Logistic regression
w04 (n =500, d = 250)
= Logistic regression
= 0.3 (n = 1000, d = 250)
203
8 Stability guarantee
2 for subbagging
2.2 Subbagged
5 ubbagged LR
5 (n =500, d = 250)
0.1 Subbagged LR
(n = 1000, d = 250)
0.0

Error tolerance \/ne

36,40

Is the guarantee tight?

Theorem: a matching bound for subbagging

There exists a base algorithm A that returns predictions in [0, 1],
such that as B — 00, Apag is not (¢, d)-stable for any

1 p

§e2c — = .
‘ <c(n—l) 1-p

for a constant ¢, as long as 1/n < 6 < 1/2 and min{p,1 — p} > 1/n.

37/40

Is the guarantee tight?

Theorem: a matching bound for subbagging

There exists a base algorithm A that returns predictions in [0, 1],
such that as B — 00, Apag is not (¢, d)-stable for any

1 p

§e2c — = .
‘ <c(n—l) 1-p

for a constant ¢, as long as 1/n < 6 < 1/2 and min{p,1 — p} > 1/n.

Illustration for n = 500, m = 250:

37/40

Is the guarantee tight?

Proof sketch: a “voting” algorithm

o Let X; =1 for n many i € [n], otherwise X; =0

~

e Want to construct A so that |f(x) — FVi(x)| > € for all i with X; = 1

38/40

Is the guarantee tight?

Proof sketch: a “voting” algorithm

o Let X; =1 for n many i € [n], otherwise X; =0

e Want to construct A so that |f(x) — FVi(x)| > € for all i with X; = 1
o Let fo(x) = Iy, x> for some t ~ pd

o If X; =1, then i € S, = (x) is a bit more likely to be 1
e If X; =0, then i € Sp = f(x) is a bit more likely to be 0
e Exact probabilities calculated via the HyperGeometric distrib

38/40

Stability definitions

Compare to a more strict definition of stability:

Worst-case stability

A is e-worst-case-stable if
m,ax|f(X) = ﬂr(x)| < € < rather than Zl‘?(x)*F\. <sn

'()>e =

when trained on any data set D, and tested on any x

39/40

Stability definitions

Compare to a more strict definition of stability:

Worst-case stability

A is e-worst-case-stable if

<n

7 AV L
m,aX|f(X) f (X)| < € < rather than Z_:]l‘f(x)ff\;(x)ps <

when trained on any data set D, and tested on any x

Results (with B — o0):

e For any A, Ay, is p-worst-case-stable

e For any € < p, there exists an A s.t. Ap,g is not e-worst-case-stable

39/40

Part 2: summary & open questions

Our results:

o Classical bagging & subbagging can be applied to any algorithm A
to achieve an assumption-free stability guarantee

e Downstream, this verifies generalization, predictive inference, etc
properties for bagged algorithms

40/40

Part 2: summary & open questions

Our results:
o Classical bagging & subbagging can be applied to any algorithm A
to achieve an assumption-free stability guarantee

e Downstream, this verifies generalization, predictive inference, etc
properties for bagged algorithms

Open questions:

e How does bagging perform relative to other definitions of stability?
e Guarantees for aggregation procedures aside from averaging?

e Guarantees for structured prediction problems () Z R)?

Thank you! 40/40

