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Background: algorithmic stability

Data (X1,Y1), . . . , (Xn,Yn) ∈ Rd × R algorithm A−→ Fitted model f̂

• Can f̂ estimate the true model for Y | X?

• Is f̂ guaranteed to predict Y with low test error?

• Is training error ≈ test error?

• Can we estimate how well f̂ predicts Y from X?

xy

more assumptions

distribution-free?
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Background: algorithmic stability

Concentration / consistency: f̂ ≈ f̂ ′ if we resample entire data set

Stability: f̂ ≈ f̂ ′ if we resample small fraction of data set
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Background: algorithmic stability

Definition

A is (ϵ, δ)-stable with respect to distribution P & sample size n if

PP

{ ∣∣f̂ (Xn+1)− f̂ \i (Xn+1)
∣∣ > ϵ

}
≤ δ for (Xj ,Yj)

iid∼ P

↗ ↖
A trained on {(Xj ,Yj ); j ∈ [n]} A trained on {(Xj ,Yj ) : j ∈ [n]\i}

Notes:

• We assume A treats training data symmetrically

A
(
(X1,Y1), . . . , (Xn,Yn)

)
= A

(
(Xσ(1),Yσ(1)), . . . , (Xσ(n),Yσ(n))

)

• Framework & results allow for a randomized A
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Motivation for algorithmic stability

Stability has implications for:

• Generalization [Bousquet & Elisseeff 2002; Elisseeff et al 2005]

• Learnability [Shalev-Shwartz et al 2010]

• Predictive inference

[Steinberger & Leeb 2018; B., Candès, Ramdas, Tibshirani 2021]
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Motivation for algorithmic stability — generalization

After training a model f̂ = A
(
(Xi ,Yi )i∈[n]

)
...

• Want to estimate L(f̂ ), where L(f ) = E [ℓ(f (X ),Y )]

• Leave-one-out estimate LLOO(f̂ ) =
1
n

∑n
i=1 ℓ(f̂

\i (Xi ),Yi )

Stability leads to generalization: [Bousquet & Elisseeff 2002]

• If ℓ is bounded and A satisfies

E
[∣∣∣ℓ(f̂ (Xn+1),Yn+1)− ℓ(f̂ \i (Xn+1),Yn+1)

∣∣∣
]
≤ ϵ

then

L(f̂ ) ≤ LLOO(f̂ ) +OP

(
n−1/2 + ϵ1/2

)
.
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Motivation for algorithmic stability — predictive inference

Definition: distribution-free predictive set

A map from data (Xi ,Yi )i∈[n] to a prediction band Ĉn s.t.

P
(Xi ,Yi )

iid∼P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α

for every distribution P.

Methods:

• Conformal prediction — high computational cost [Vovk et al 2005]

• Split conformal (i.e., holdout set) — less precise b/c split data

• Jackknife a.k.a. leave-one-out cross-validation — is it distrib.-free?
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Motivation for algorithmic stability — predictive inference

Jackknife: fix any regression algorithm A, then compute

f̂ = A
(
(Xi ,Yi )i∈[n]

)
, f̂ \i = A

(
(Xj ,Yj)j∈[n]\{i}

)

Prediction interval for Yn+1 given Xn+1 = x :

Ĉn(x) = f̂ (x)± Q1−α(Ri )

where Ri = |Yi − f̂ \i (Xi )| = ith leave-one-out residual

Is this method distribution-free?

• No assumption-free guarantees — f̂ & f̂ \i may behave differently

• If A is (ϵ, δ)-stable, guarantees w/o any assumptions on P

[Steinberger & Leeb 2018; B., Candès, Ramdas, Tibshirani 2021]

8/40



Motivation for algorithmic stability — predictive inference

Jackknife: fix any regression algorithm A, then compute

f̂ = A
(
(Xi ,Yi )i∈[n]

)
, f̂ \i = A

(
(Xj ,Yj)j∈[n]\{i}

)

Prediction interval for Yn+1 given Xn+1 = x :
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Motivation for algorithmic stability

At a high level...

We want methods that are valid with no untestable assumptions

• We can’t test whether P satisfies distributional assumptions

(e.g., parametric model / smoothness / etc)

• Some robust methods (e.g., jackknife) instead assume A is stable

• But, is this another untestable assumption?
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Aren’t most algorithms stable?

Some algorithms are known to satisfy stability:

• Nearest neighbors:

f̂ (x) =
1

k

∑

i∈k-NN(x)

Yi

Stable if we choose k ≪ n

• Ridge regression:

f̂ = ϕ(x ; β̂n) where β̂n = argmin
β

{
1

n

n∑

i=1

ℓ(Yi ;ϕ(Xi ;β)) + λ∥β∥22

}

Stable if f and ℓ are Lipschitz
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Aren’t most algorithms stable?

Exhibit A: least squares – known to be unstable if d ≈ n
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Aren’t most algorithms stable?

Exhibit B: modern ML methods – too complex to prove stability

millions of images and are robust to variations in images.
DL has become popular because of recent successes
especially in image segmentation and classification ap-
plications. Compared with DL, classical ML approaches
that are hand designed in decomposable pipelines are
more interpretable because each component has an
explanation, but they are usually not very accurate or
robust. By using DL models we sacrifice interpretability
for robust and complex imaging features with greater
generalization ability.

Several types of DL approaches have been developed
for different purposes, such as object detection and
segmentation in images, speech recognition, genotype
and phenotype detection, and classification of diseases.
Some of the popular DL algorithms are stacked autoen-
coders [2], deep Boltzmann machines, deep-belief
neural networks [3], and convolutional neural networks
(CNNs) [4]. CNNs are the algorithms most commonly
applied to images. Since their first introduction in 1989
[5], CNNs have been widely applied to classification
and segmentation of photographic images with great
success [4,6,7].

DL techniques achieve impressive results and
robustness by training on large amounts of data. They
are also gaining popularity in many areas of medical
image analysis [8], such as tissue and lesion segmentation
[1,9-13], lesion diagnosis [1,14-18], and histopathologic
analysis [19,20]. CNN architectures are increasingly
complex, with some systems having more than 100
layers, which means millions of weights and billions
of connections among neurons. A typical CNN
architecture contains multiple convolution, max-
pooling, and activation layers. Convolutional layers pro-
duce feature maps by convolving a convolutional kernel
across the input image. Max-pooling is used to down-
sample the output of convolutional layers by passing
the maximum value of a defined neighborhood to the
next layer. Rectified linear unit is one of the most
commonly used activation functions. It nonlinearly
transforms data by clipping any negative input values to
zero, while positive input values are passed as output
[21]. To perform a prediction from input data, the
output scores of final CNN layer are connected to a
softmax nonlinearity function that normalizes scores
into multinomial distribution over labels. Also, an
optimizer that minimizes the error between prediction
and ground-truth labels through a loss function and a
gradient backpropagation method that updates weights at
each iteration are used to train CNN architectures until
they converge to steady state (see Fig. 1).

Ultrasound Imaging
Diagnostic ultrasonography is an ultrasound-based im-
aging technique used for visualizing and diagnosing
pathological changes of internal organs such as liver,
heart, and vessels and superficial structures such as
thyroid, breast, and muscles. Ultrasound has several
advantages compared with other medical imaging tech-
niques. It is safe because it does not use harmful ionizing
radiation, like radiography and CT, it is considerably
lower in cost, it is portable for point-of-care applications,
and it provides real-time imaging. Because it is portable,
it can be transported to a patient’s bedside and is useful
for patient screening and follow-up. The disadvantages of
ultrasound include its strong operator dependence and
inability to examine areas of the body containing gas and
bones. The most common types of ultrasound images are
shown in Figure 2.

METHODS
We performed a thorough analysis of the literature using
the Google Scholar and PubMed search engines. We
included 31 peer-reviewed journal publications and
conference proceedings in this field (Medical Image
Analysis, IEEE Transactions on Medical Imaging, IEEE
Journal of Biomedical and Health Informatics, Medical
Physics, Ultrasonics, and conference proceedings from
SPIE, the Medical Image Computing and Computer
Assisted Intervention Society, the Institute of Electrical
and Electronics Engineers, and others) that describe the
application of DL to ultrasound before January 15, 2019
(see Fig. 3 for the identification and selection procedure).
We divided reports into four groups on the basis of the
frequency of studies in the literature, namely, studies
on thyroid, breast, liver, and other areas.

Fig 1. A schematic illustration of a deep-learning training
process for a classification task. White arrows show
operations between layers. CNN ¼ convolutional neural
network; SGD ¼ stochastic gradient descent.

Journal of the American College of Radiology 1319
Akkus et al n Deep-Learning Applications in Ultrasound

Figure from A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for

Improving Clinical Workflow, Akkus et al 2019
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Aren’t most algorithms stable?

Exhibit C: some methods have instability built in

• Lasso (glmnet R package):

glmnet(x,y,..., lambda.min.ratio = ifelse(nobs < nvars,0.01,1e-04) ,...)

• Highly adaptive Lasso (hal9001 R package):

SL.hal(Y,X,..., nfolds = ifelse(length(Y) <= 100,20,10) ,...)

• Multiple imputation (mice & midastouch R package):

In an old version of the code: outout <- ifelse(nobs>250,FALSE,TRUE)

• . . .
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Part 1: Testing stability in the black box setting

The black box setting: we learn how A works by running it on data, e.g.:

• Run A on samples bootstrapped from available real data

• Run A on semisynthetic data obtained by perturbing the real data

• Run A on simulated data obtained by fitting a model to real data

• Etc.

But, we cannot “look inside the black box” of A or of a fitted f̂ :

• Cannot compute sup(x′,y ′)

∣∣[A(D)](x)− [A(D ∪ (x ′, y ′))](x)
∣∣

• Cannot check if f̂ = A(D) is Lipschitz

• Etc.

14/40



Part 1: Testing stability in the black box setting

The black box setting: we learn how A works by running it on data, e.g.:

• Run A on samples bootstrapped from available real data

• Run A on semisynthetic data obtained by perturbing the real data

• Run A on simulated data obtained by fitting a model to real data

• Etc.

But, we cannot “look inside the black box” of A or of a fitted f̂ :

• Cannot compute sup(x′,y ′)

∣∣[A(D)](x)− [A(D ∪ (x ′, y ′))](x)
∣∣

• Cannot check if f̂ = A(D) is Lipschitz

• Etc.

14/40



Part 1: Testing stability in the black box setting

We want to construct a test T̂ = T̂n,ϵ,δ(A,Dℓ,Du) that:
↘ ↙

available labeled & unlabeled data

{
Returns 1 if we are confident that (A,P, n) is (ϵ, δ)-stable

Returns 0 otherwise

• We require T̂ to be a valid distribution-free test of (ϵ, δ)-stability:

P
{
T̂n,ϵ,δ(A,Dℓ,Du) = 1

}
≤ α for any (A,P, n) that is not (ϵ, δ)-stable

↖
with respect to data Dℓ,Du drawn i.i.d. from P

• We want T̂ to have high power for detecting stability:

P
{
T̂n,ϵ,δ(A,Dℓ,Du) = 1

}
???≫ α for (ϵ, δ)-stable (A,P, n)
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Black-box tests

Definition: black-box test

T̂ = T̂ (A,Dℓ,Du) is a black-box test if it can be defined as follows:
↘ ↙

available labeled & unlabeled data

• At step r = 1, generate a new dataset (e.g., via subsampling/bootstrap/simulation)

(D(1)
ℓ ,D(1)

u ) = f (1)
[
Dℓ,Du

]
,

and train and evaluate the model,

f̂ (1) = A
(
D(1)

ℓ

)
, Ŷ(1) = f̂ (1)

(
D(1)

u

)
.

• At step r = 2, generate a new dataset

(D(2)
ℓ ,D(2)

u ) = f (2)
[
Dℓ,Du,D(1)

ℓ ,D(1)
u , Ŷ(1)],

and train and evaluate the model,

f̂ (2) = A
(
D(2)

ℓ

)
, Ŷ(2) = f̂ (2)

(
D(2)

u

)
.

• Repeat for r = 3, 4, . . .

• Finally, define T̂ = g
[
Dℓ,Du, (D(r)

ℓ )r≥1, (D(r)
u )r≥1, (Ŷ

(r))r≥1

]
.
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Binomial test

Let κ = min
{

|Dℓ|
n , |Dℓ|+|Du|

n+1

}

⇝ can construct ⌊κ⌋ many data sets (X k
1 ,Y

k
1 ), . . . , (X

k
n ,Y

k
n ),X

k
n+1

A simple binomial test

• For each data set k = 1, . . . , ⌊κ⌋, fit models

f̂k = A
(
(X k

i ,Y
k
i )i∈[n]

)
, f̂

\n
k = A

(
(X k

i ,Y
k
i )i∈[n−1]

)

& compare predictions:

∆k =
∣∣ f̂k(X k

n+1)− f̂
\n
k (X k

n+1)
∣∣

• Compare against Binom(⌊κ⌋,δ) at level α:

T̂ = 1
{ ∑

k1∆k>ϵ ≤ the α-quantile of Binom(⌊κ⌋,δ)
}

↖
with randomization to handle discreteness
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Performance of the binomial test

Theorem: validity of the simple binomial test

If (A,P, n) is not (ϵ, δ)-stable, then

P
{
T̂ = 1

}
≤ α.

Theorem: power of the simple binomial test

If (A,P, n) is (ϵ, δ)-stable, & either δ∗ϵ = 0 or δ ≤ 1− α1/⌊κ⌋,

P
{
T̂ = 1

}
=

{
α ·

(
1− δ∗ϵ
1− δ

)⌊κ⌋ }
∧ 1

↖
δ∗ϵ = min{δ : (A, P, n) is (ϵ, δ)-stable}
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Performance of the binomial test

• The binomial test has validity, but power is low

• Unsurprising b/c it doesn’t make efficient use of the data—

can we improve power by extracting more info from the data?
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A hardness result

Recall κ = min
{

|Dℓ|
n , |Dℓ|+|Du|

n+1

}

Theorem: upper bound on power

Let T̂ be any black-box test of stability that is valid at level ≤ α.

If (A,P, n) is (ϵ, δ)-stable,

P
{
T̂ = 1

}
≤

{
α ·

(
1− δ∗ϵ
1− δ

)κ }
∧ 1.
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A hardness result

Interpretation:

• Every valid black-box test has low power:

if κ = O(1) and δ = o(1) then power ≈ α

• Can’t improve on the power of the simple binomial test

• No information can be gained from additional calls to A
or from resampling/bootstrapping/simulating/modeling/etc
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Proof sketch

Suppose (A,P, n) is (ϵ, δ)-stable.

Proof idea: construct (A′,P ′, n) that is not stable, such that:

• P ≈ P ′ so that dTV(data from P, data from P′) is small

• And, if data ∼ P, then A and A′ return the same output

• So, P(A,P,n)

{
T̂ = 1

}
≈ P(A′,P′,n)

{
T̂ = 1

}
≤ α
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Proof sketch

P
{
T̂ = 1

}
≤ α

(
1− δ∗ϵ
1− δ

) |Dℓ|
n

and P
{
T̂ = 1

}
≤ α

(
1− δ∗ϵ
1− δ

) |Dℓ|+|Du |
n+1

Distribution P ′: draw (X ,Y ) ∼ P, then return
{
(X ,Y ) with probability 1− c

(X , y∗)

(x∗,Y )

with probability c ,

for a small constant c > 0

Algorithm A′:

Given data (x1, y1), . . . , (xm, ym) & test point xm+1,

• If m = n and yi = y∗ for any i , return a corrupted prediction

• Otherwise, return [A
(
(x1, y1), . . . , (xm, ym)

)
](xm+1)

↖
↙

choose s.t. (A′, P′, n)
is not (ϵ, δ) stable

xi = x∗
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Part 1: summary & open questions

Our results:

• The simple binomial test uses the data very inefficiently,

but can still be the most powerful distribution-free test of stability

• More sophisticated strategies (simulating/bootstrapping/etc)

do not help to determine stability

Open questions:

• Are there mild assumptions on A,P that make stability testable?

• Are we using a definition of stability that’s too strong?

• Is there a way to convert any algorithm into a stable algorithm,

with a pre- or post-processing step?
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Part 2: Stability of bagged algorithms

Question inspired by Part 1

• Is there a way to convert any algorithm into a stable algorithm?

Empirically, bagging (& other ensembling procedures) have been

observed to improve stability dramatically.

Bagging

• Sample subsets Sb ⊆ [n] for b = 1, . . . ,B

• Fit models f̂b = A((Xi ,Yi ) : i ∈ Sb)

• Abag returns aggregated model f̂ :

f̂ (x) :=
1

B

∑

b

f̂b(x)
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Background on bagging

The most common options:

• Classical bagging = subsets Sb of size m, sampled w/ replacement

p = P {i ∈ Sb} = 1− (1− 1/n)m

• Subbagging = subsets Sb of size m < n, sampled w/o replacement

p = P {i ∈ Sb} = m/n
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Background on bagging

Bagging appears in:

• Random forests [Breiman 2001]

• Variable selection in regression [Meinshausen & Bühlmann 2010]

• Classification in the presence of class imbalance [Li 2007]

• Robust Bayesian inference (BayesBag) [Huggins & Miller 2023]

• & many more
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Background on bagging

Many results on theoretical properties—

Bagging induces smoothness, reduces variance, creates robustness

[Bühlmann&Yu 2002, Grandvalet 2004, Friedman&Hall 2000, Elisseeff et al 2005, . . . ]

Some results show stability of bagging in limited regimes (m ≪ n)

[Poggio et al 2002, Chen et al 2022]
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Bagging helps stability
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Re-defining stability

Definition from Part 1

A is (ϵ, δ)-stable if

PP

{ ∣∣f̂ (x)− f̂ \i (x)
∣∣ > ϵ

}
≤ δ

when trained on D = (X1,Y1), . . . , (Xn,Yn)
iid∼ P, and tested on x ∼ PX

Updated definition (strictly stronger)

A is (ϵ, δ)-stable if

1

n

n∑

i=1

1{
∣∣f̂ (x)− f̂ \i (x)

∣∣ > ϵ} ≤ δ

when trained on any D = (X1,Y1), . . . , (Xn,Yn), and tested on any x
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Main result: stability guarantee

Recall p = P {i ∈ Sb} =

{
m/n for subbagging

1− (1− 1/n)m for classical bagging

Theorem

Let A be any base algorithm that returns predictions in [0, 1].

For any n,m, as B → ∞, Abag satisfies (ϵ, δ)-stability for every

δϵ2 ≥ 1

4(n − 1)
· p

1− p

• Framework & results allow for a randomized A
• Results extend to finite B (use Hoeffding’s inequality)

• Can also extend to models with unbounded output, via either

clipping predictions, or letting ϵ adapt to the range of f̂
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Main result: stability guarantee

Regimes for subbagging:

• Proportional sampling: m = O(n)

Stability is guaranteed for δϵ2 ≳ n−1

• Massive subsampling: m = O(nβ) for 0 < β < 1

Stability is guaranteed for δϵ2 ≳ n−(2−β)

[See also existing stability guarantees by Chen, Syrgkanis, Austern 2022]

• Minimal subsampling: m = n −O(nβ) for 0 < β < 1

Stability is guaranteed for δϵ2 ≳ n−β
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Proof sketch

Suppose S ⊂ [n] contains δn “bad” data points:

|f̂ (x)− f̂ \i (x)| ≥ ϵ

where f̂ = Abag(D) averages over all bags Sb,

while f̂ \i = Abag(D−i ) averages over all bags Sb ̸∋ i .

Proof idea: a double counting argument for L =
∑

i∈S |f̂ (x)− f̂ \i (x)|

• Summing over i , we see L ≥ ϵ · |S | = δϵn

• We can also rewrite L by summing over bags b, because

f̂ \i (x) = E
[
f̂b(x)

∣∣∣ i ̸∈ Sb
]
=

1

1− p
E
[
f̂b(x)1i∈Sb

]

where expectation is taken over a randomly drawn bag Sb.
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Empirical results

Neural networks

Empirically assessing stability 
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Empirical results

Regression trees
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Empirical results

Logistic regression + ridge penalty with λ = 0.001
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Is the guarantee tight?

Theorem: a matching bound for subbagging

There exists a base algorithm A that returns predictions in [0, 1],

such that as B → ∞, Abag is not (ϵ, δ)-stable for any

δϵ2 <
1

c(n − 1)
· p

1− p

for a constant c , as long as 1/n ≪ δ ≤ 1/2 and min{p, 1− p} ≫ 1/n.

Illustration for n = 500, m = 250:

1/
√
n 2/

√
n 3/

√
n 4/

√
n 5/

√
n

Error tolerance ε

0.00
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E
rr
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ty
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Derandomized bagging
is (ε, δ)-stable for
any base algorithm.

Derandomized bagging
is not (ε, δ)-stable
for some base algorithm.
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Is the guarantee tight?

Proof sketch: a “voting” algorithm

• Let Xi = 1 for δn many i ∈ [n], otherwise Xi = 0

• Want to construct A so that |f̂ (x)− f̂ \i (x)| ≥ ϵ for all i with Xi = 1

• Let f̂b(x) = 1
∑

i∈b Xi≥t for some t ≈ pδ

• If Xi = 1, then i ∈ Sb ⇒ f̂b(x) is a bit more likely to be 1

• If Xi = 0, then i ∈ Sb ⇒ f̂b(x) is a bit more likely to be 0

• Exact probabilities calculated via the HyperGeometric distrib
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Stability definitions

Compare to a more strict definition of stability:

Worst-case stability

A is ϵ-worst-case-stable if

max
i

∣∣f̂ (x)− f̂ \i (x)
∣∣ ≤ ϵ ← rather than

∑
i

1|f̂ (x)−f̂ \i (x)|>ϵ
≤ δn

when trained on any data set D, and tested on any x

Results (with B → ∞):

• For any A, Abag is p-worst-case-stable

• For any ϵ < p, there exists an A s.t. Abag is not ϵ-worst-case-stable
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Part 2: summary & open questions

Our results:

• Classical bagging & subbagging can be applied to any algorithm A
to achieve an assumption-free stability guarantee

• Downstream, this verifies generalization, predictive inference, etc

properties for bagged algorithms

Open questions:

• How does bagging perform relative to other definitions of stability?

• Guarantees for aggregation procedures aside from averaging?

• Guarantees for structured prediction problems (Y ̸⊆ R)?

Thank you!
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